Local Characteristics of the Nocturnal Boundary Layer in Response to External Pressure Forcing

Steven J. A. van der Linden Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands

Search for other papers by Steven J. A. van der Linden in
Current site
Google Scholar
PubMed
Close
,
Peter Baas Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands

Search for other papers by Peter Baas in
Current site
Google Scholar
PubMed
Close
,
J. Antoon van Hooft Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands

Search for other papers by J. Antoon van Hooft in
Current site
Google Scholar
PubMed
Close
,
Ivo G. S. van Hooijdonk Fluid Dynamics Laboratory and J. M. Burgers Center, Eindhoven University of Technology, Eindhoven, Netherlands

Search for other papers by Ivo G. S. van Hooijdonk in
Current site
Google Scholar
PubMed
Close
,
Fred C. Bosveld Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Fred C. Bosveld in
Current site
Google Scholar
PubMed
Close
, and
Bas J. H. van de Wiel Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands

Search for other papers by Bas J. H. van de Wiel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Geostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw, the Netherlands. Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be regarded as an external forcing parameter of the nocturnal stable boundary layer. This is in contrast to local parameters such as in situ wind speed, the Monin–Obukhov stability parameter (z/L), or the local Richardson number. To characterize the stable boundary layer, ensemble averages of clear-sky nights with similar geostrophic wind speeds are formed. In this manner, the mean dynamical behavior of near-surface turbulent characteristics and composite profiles of wind and temperature are systematically investigated. The classification is found to result in a gradual ordering of the diagnosed variables in terms of the geostrophic wind speed. In an ensemble sense the transition from the weakly stable to very stable boundary layer is more gradual than expected. Interestingly, for very weak geostrophic winds, turbulent activity is found to be negligibly small while the resulting boundary cooling stays finite. Realistic numerical simulations for those cases should therefore have a comprehensive description of other thermodynamic processes such as soil heat conduction and radiative transfer.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. J. A. van der Linden, s.j.a.vanderlinden@tudelft.nl

Abstract

Geostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw, the Netherlands. Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be regarded as an external forcing parameter of the nocturnal stable boundary layer. This is in contrast to local parameters such as in situ wind speed, the Monin–Obukhov stability parameter (z/L), or the local Richardson number. To characterize the stable boundary layer, ensemble averages of clear-sky nights with similar geostrophic wind speeds are formed. In this manner, the mean dynamical behavior of near-surface turbulent characteristics and composite profiles of wind and temperature are systematically investigated. The classification is found to result in a gradual ordering of the diagnosed variables in terms of the geostrophic wind speed. In an ensemble sense the transition from the weakly stable to very stable boundary layer is more gradual than expected. Interestingly, for very weak geostrophic winds, turbulent activity is found to be negligibly small while the resulting boundary cooling stays finite. Realistic numerical simulations for those cases should therefore have a comprehensive description of other thermodynamic processes such as soil heat conduction and radiative transfer.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. J. A. van der Linden, s.j.a.vanderlinden@tudelft.nl
Save
  • Acevedo, O. C., L. Mahrt, F. S. Puhales, F. D. Costa, L. E. Medeiros, and G. A. Degrazia, 2016: Contrasting structures between the decoupled and coupled states of the stable boundary layer. Quart. J. Roy. Meteor. Soc., 142, 693702, doi:10.1002/qj.2693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • André, J. C., and L. Mahrt, 1982: The nocturnal surface inversion and influence of clear-air radiative cooling. J. Atmos. Sci., 39, 864878, doi:10.1175/1520-0469(1982)039<0864:TNSIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansorge, C., and J. P. Mellado, 2014: Global intermittency and collapsing turbulence in the stratified planetary boundary layer. Bound.-Layer Meteor., 153, 89116, doi:10.1007/s10546-014-9941-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baas, P., B. J. H. van de Wiel, L. van den Brink, and A. Holtslag, 2012: Composite hodographs and inertial oscillations in the nocturnal boundary layer. Quart. J. Roy. Meteor. Soc., 138, 528535, doi:10.1002/qj.941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babić, K., Z. Bencetić, and Ž. Večenaj, 2012: Determining a turbulence averaging time scale by Fourier analysis for the nocturnal boundary layer. Geofizika, 29, 3551.

    • Search Google Scholar
    • Export Citation
  • Basu, S., and F. Porté-Agel, 2006: Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: A scale-dependent dynamic modeling approach. J. Atmos. Sci., 63, 20742091, doi:10.1175/JAS3734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272, doi:10.1007/s10546-004-2820-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosveld, F. C., 2016: Cabauw In-situ Observational Program 2000—Now: Instruments, calibrations and set-up. KNMI Tech. Rep., 77 pp., http://projects.knmi.nl/cabauw/insitu/observations/documentation/Cabauw_TR/Cabauw_TR.pdf.

  • Bosveld, F. C., and F. Beyrich, 2004: Classifying observations of stable boundary layers for model validation. 16th Symp. on Boundary Layers and Turbulence, Portland, ME, Amer. Meteor. Soc., P4.13, https://ams.confex.com/ams/pdfpapers/78641.pdf.

  • Bosveld, F. C., P. Baas, E. van Meijgaard, E. I. F. de Bruijn, G. J. Steeneveld, and A. A. M. Holtslag, 2014: The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part A: Case selection and set-up. Bound.-Layer Meteor., 152, 133156, doi:10.1007/s10546-014-9917-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Botev, Z. I., J. F. Grotowski, and D. P. Kroese, 2010: Kernel density estimation via diffusion. Ann. Stat., 38, 29162957, doi:10.1214/10-AOS799.

  • Costa, F. D., O. C. Acevedo, J. C. M. Mombach, and G. A. Degrazia, 2011: A simplified model for intermittent turbulence in the nocturnal boundary layer. J. Atmos. Sci., 68, 17141729, doi:10.1175/2011JAS3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118, 273303, doi:10.1007/s10546-005-3780-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1999: Stable boundary-layer modelling: Established approaches and beyond. Bound.-Layer Meteor., 90, 423446, doi:10.1023/A:1001749007836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Roode, S. R., F. C. Bosveld, and P. S. Kroon, 2010: Dew formation, eddy-correlation latent heat fluxes, and the surface energy imbalance at Cabauw during stable conditions. Bound.-Layer Meteor., 135, 369383, doi:10.1007/s10546-010-9476-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias-Júnior, C. Q., L. D. , E. P. Marques Filho, R. A. Santana, M. Mauder, and A. O. Manzi, 2017: Turbulence regimes in the stable boundary layer above and within the Amazon forest. Agric. For. Meteor., 233, 122132, doi:10.1016/j.agrformet.2016.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donda, J. M. M., B. J. H. van de Wiel, F. C. Bosveld, F. Beyrich, G. J. F. van Heijst, and H. J. H. Clercx, 2013: Predicting nocturnal wind and temperature profiles based on external forcing parameters. Bound.-Layer Meteor., 146, 103117, doi:10.1007/s10546-012-9755-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donda, J. M. M., I. G. S. van Hooijdonk, A. F. Moene, H. J. J. Jonker, G. J. F. van Heijst, H. J. H. Clercx, and B. J. H. van de Wiel, 2015: Collapse of turbulence in stably stratified channel flow: A transient phenomenon. Quart. J. Roy. Meteor. Soc., 141, 21372147, doi:10.1002/qj.2511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estournel, C., and D. Guedalia, 1985: Influence of geostrophic wind on atmospheric nocturnal cooling. J. Atmos. Sci., 42, 26952698, doi:10.1175/1520-0469(1985)042<2695:IOGWOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, P. O. G. Persson, E. L Andreas, and P. S. Guest, 2005: Stable boundary-layer scaling regimes: The SHEBA data. Bound.-Layer Meteor., 116, 201235, doi:10.1007/s10546-004-2729-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, P., and S. Basu, 2015: Direct numerical simulation of intermittent turbulence under stably stratified conditions. Nonlinear Processes Geophys., 22, 447471, doi:10.5194/npg-22-447-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Y., A. H. Monahan, and N. A. McFarlane, 2013: Diurnal variations of land surface wind speed probability distributions under clear-sky and low-cloud conditions. Geophys. Res. Lett., 40, 33083314, doi:10.1002/grl.50575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, doi:10.1175/BAMS-D-11-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, M. A., and J. Cuxart, 2005: Large-eddy simulations of the stable boundary layer using the standard Kolmogorov theory: Range of applicability. Bound.-Layer Meteor., 115, 241261, doi:10.1007/s10546-004-3470-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1998: Nocturnal boundary-layer regimes. Bound.-Layer Meteor., 88, 255278, doi:10.1023/A:1001171313493.

  • Mahrt, L., 2011: The near-calm stable boundary layer. Bound.-Layer Meteor., 140, 343360, doi:10.1007/s10546-011-9616-2.

  • Mahrt, L., and D. Vickers, 2006: Extremely weak mixing in stable conditions. Bound.-Layer Meteor., 119, 1939, doi:10.1007/s10546-005-9017-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and G. Svensson, 2007: Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers. J. Atmos. Sci., 64, 645655, doi:10.1175/JAS3856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNider, R. T., D. E. England, M. J. Friedman, and X. Shi, 1995: Predictability of the stable atmospheric boundary layer. J. Atmos. Sci., 52, 16021614, doi:10.1175/1520-0469(1995)052<1602:POTSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNider, R. T., and Coauthors, 2012: Response and sensitivity of the nocturnal boundary layer over land to added longwave radiative forcing. J. Geophys. Res., 117, D14106, doi:10.1029/2012JD017578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moene, A. F., and J. van Dam, 2014: Transport in the Atmosphere–Vegetation–Soil Continuum. Cambridge University Press, 446 pp.

    • Crossref
    • Export Citation
  • Monahan, A. H., T. Rees, Y. He, and N. McFarlane, 2015: Multiple regimes of wind, stratification, and turbulence in the stable boundary layer. J. Atmos. Sci., 72, 31783198, doi:10.1175/JAS-D-14-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 2005: Direct numerical simulation of stable channel flow at large stability. Bound.-Layer Meteor., 116, 277299, doi:10.1007/s10546-004-2818-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oncley, S. P., C. A. Friehe, J. C. Larue, J. A. Businger, E. C. Itsweire, and S. S. Chang, 1996: Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J. Atmos. Sci., 53, 10291044, doi:10.1175/1520-0469(1996)053<1029:SLFPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581, doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandu, I., A. Beljaars, P. Bechtold, T. Mauritsen, and G. Balsamo, 2013: Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Model. Earth Syst., 5, 117133, doi:10.1002/jame.20013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., R. T. McNider, M. P. Singh, D. E. England, M. J. Friedman, W. M. Lapenta, and W. B. Norris, 2005: On the behavior of the stable boundary layer and the role of initial conditions. Pure Appl. Geophys., 162, 18111829, doi:10.1007/s00024-005-2694-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2010: Gradient-based scales and similarity laws in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 136, 12431254, doi:10.1002/qj.638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., B. J. H. van de Wiel, and A. A. M. Holtslag, 2006: Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J. Atmos. Sci., 63, 920935, doi:10.1175/JAS3654.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2004: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor., 110, 255279, doi:10.1023/A:1026097926169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, doi:10.1175/JAS-D-11-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., D. H. Lenschow, M. A. LeMone, and L. Mahrt, 2016: The role of large-coherent-eddy transport in the atmospheric surface layer based on CASES-99 observations. Bound.-Layer Meteor., 160, 83111, doi:10.1007/s10546-016-0134-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svensson, G., and Coauthors, 2011: Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: The Second GABLS Experiment. Bound.-Layer Meteor., 140, 177206, doi:10.1007/s10546-011-9611-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tijm, A. B. C., A. J. van Delden, and A. A. M. Holtslag, 1999: The inland penetration of sea breezes. Contrib. Atmos. Phys., 72, 317328.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., A. F. Moene, R. J. Ronda, H. A. R. de Bruin, and A. A. M. Holtslag, 2002a: Intermittent turbulence and oscillations in the stable boundary layer over land. Part II: A system dynamics approach. J. Atmos. Sci., 59, 25672581, doi:10.1175/1520-0469(2002)059<2567:ITAOIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., R. J. Ronda, A. F. Moene, H. A. R. de Bruin, and A. A. M. Holtslag, 2002b: Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: A bulk model. J. Atmos. Sci., 59, 942958, doi:10.1175/1520-0469(2002)059<0942:ITAOIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, and H. J. J. Jonker, 2012a: The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. J. Atmos. Sci., 69, 30973115, doi:10.1175/JAS-D-12-064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, H. J. J. Jonker, P. Baas, S. Basu, J. M. M. Donda, J. Sun, and A. A. M. Holtslag, 2012b: The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci., 69, 31163127, https://doi.org/10.1175/JAS-D-12-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., and Coauthors, 2017: Regime transitions in near-surface temperature inversions: A conceptual model. J. Atmos. Sci., 74, 10571073, doi:10.1175/JAS-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Hooijdonk, I. G. S., J. M. M. Donda, H. J. H. Clercx, F. C. Bosveld, and B. J. H. van de Wiel, 2015: Shear capacity as prognostic for nocturnal boundary layer regimes. J. Atmos. Sci., 72, 15181532, doi:10.1175/JAS-D-14-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Ulden, A. P., and J. Wieringa, 1996: Atmospheric boundary layer research at Cabauw. Bound.-Layer Meteor., 78, 3969, doi:10.1007/BF00122486.

  • Vignon, E., and Coauthors, 2017: Stable boundary layer regimes at Dome C, Antarctica: Observation and analysis. Quart. J. Roy. Meteor. Soc., 143, 12411253, doi:10.1002/qj.2998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., T. Haiden, B. Pospichal, S. Eisenbach, and R. Steinacker, 2004: Minimum temperatures, diurnal temperature ranges, and temperature inversions in limestone sinkholes of different sizes and shapes. J. Appl. Meteor. Climatol., 43, 12241236, doi:10.1175/1520-0450(2004)043<1224:MTDTRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 1973: On surface-layer turbulence. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 101–149.

  • Zhou, B., and F. K. Chow, 2014: Nested large-eddy simulations of the intermittently turbulent stable atmospheric boundary layer over real terrain. J. Atmos. Sci., 71, 10211039, doi:10.1175/JAS-D-13-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, I. Rogachevskii, I. Esau, T. Mauritsen, and M. W. Miles, 2008: Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes. Quart. J. Roy. Meteor. Soc., 134, 793799, doi:10.1002/qj.264.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1292 782 36
PDF Downloads 394 84 5