A Simple Daily Cycle Temperature Boundary Condition for Ground Surfaces in CFD Predictions of Urban Wind Flows

Xiaoxue Wang Department of Mechanical Engineering, University of Hong Kong, Hong Kong, and Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

Search for other papers by Xiaoxue Wang in
Current site
Google Scholar
PubMed
Close
,
Yuguo Li Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China

Search for other papers by Yuguo Li in
Current site
Google Scholar
PubMed
Close
,
Kai Wang Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China

Search for other papers by Kai Wang in
Current site
Google Scholar
PubMed
Close
,
Xinyan Yang Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China

Search for other papers by Xinyan Yang in
Current site
Google Scholar
PubMed
Close
, and
Pak Wai Chan Hong Kong Observatory, Hong Kong, China

Search for other papers by Pak Wai Chan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The atmospheric boundary exhibits an obvious diurnal cycle. The daily cycle of climate variation has a significant effect on urban airflow, and an understanding of it is very important for city-scale environmental control. A new and simple daily cycle temperature boundary condition for simulations of urban airflows with computational fluid dynamics (CFD) is described herein. An analytical surface temperature formula was obtained after simplifying longwave radiation and sensible heat flux terms. The formula provides a reasonably good prediction of ground surface temperatures on sunny days without adding much complexity. The accuracy of the prediction of daily surface temperature variations in homogeneous soils was evaluated with a benchmark experiment and with weather station data. The new boundary condition was implemented in the commercial CFD software Fluent for a city-scale model. The implementation demonstrates the importance of including diurnal temperature profiles and atmospheric boundary conditions in CFD simulations of urban plumes in which an ideal urban heat island circulation occurs.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoxue Wang, xxwang@connect.hku.hk

Abstract

The atmospheric boundary exhibits an obvious diurnal cycle. The daily cycle of climate variation has a significant effect on urban airflow, and an understanding of it is very important for city-scale environmental control. A new and simple daily cycle temperature boundary condition for simulations of urban airflows with computational fluid dynamics (CFD) is described herein. An analytical surface temperature formula was obtained after simplifying longwave radiation and sensible heat flux terms. The formula provides a reasonably good prediction of ground surface temperatures on sunny days without adding much complexity. The accuracy of the prediction of daily surface temperature variations in homogeneous soils was evaluated with a benchmark experiment and with weather station data. The new boundary condition was implemented in the commercial CFD software Fluent for a city-scale model. The implementation demonstrates the importance of including diurnal temperature profiles and atmospheric boundary conditions in CFD simulations of urban plumes in which an ideal urban heat island circulation occurs.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoxue Wang, xxwang@connect.hku.hk
Save
  • ANSYS, 2011: Fluent 14.0 User’s Guide. ANSYS, Inc., 2498 pp.

  • Arya, S. P., 1999: Air Pollution Meteorology and Dispersion. Oxford University Press, 310 pp.

  • Blocken, B., and C. Gualtieri, 2012: Ten iterative steps for model development and evaluation applied to computational fluid dynamics for environmental fluid mechanics. Environ. Modell. Software, 33, 122, doi:10.1016/j.envsoft.2012.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blocken, B., J. Carmeliet, and T. Stathopoulos, 2007: CFD evaluation of wind speed conditions in passages between parallel building—Effect of wall-function roughness modifications for the atmospheric boundary layer flow. J. Wind Eng. Ind. Aerodyn., 95, 941962, doi:10.1016/j.jweia.2007.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, S. J., and R. Y. Wang, 2002: An approach for evaluating the hydrological effects of urbanization and its application. Hydrol. Processes, 16, 14031418, doi:10.1002/hyp.350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delage, Y., and P. Taylor, 1970: Numerical studies of heat island circulations. Bound.-Layer Meteor., 1, 201226, doi:10.1007/BF00185740.

  • Dudhia, J., D. Gill, K. Manning, W. Wang, and C. Bruyere, 2000: PSU/NCAR Mesoscale Modeling System tutorial class notes and users’ guide (MM5 Modeling System version 3). University Corporation for Atmospheric Research, http://www2.mmm.ucar.edu/mm5/documents/tutorial-v3-notes.html.

  • Dupont, E., L. Menut, B. Carissimo, J. Pelon, and P. Flamant, 1999: Comparison between the atmospheric boundary layer in Paris and its rural suburbs during the ECLAP experiment. Atmos. Environ., 33, 979994, doi:10.1016/S1352-2310(98)00216-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franke, J., 2006: Recommendations of the COST action C14 on the use of CFD in predicting pedestrian wind environment. Fourth Int. Symp. on Computational Wind Engineering, Yokohama, Japan, Int. Association for Wind Engineering, 529–532, http://www.iawe.org/Proceedings/CWE2006/TA4-01.pdf.

    • Crossref
    • Export Citation
  • Garratt, J. R., 1994: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Grimmond, C., and T. R. Oke, 1999: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteor., 38, 12621292, doi:10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hang, J., and Y. Li, 2010: Ventilation strategy and air change rates in idealized high-rise compact urban areas. Build. Environ., 45, 27542767, doi:10.1016/j.buildenv.2010.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hang, J., Y. Li, M. Sandberg, R. Buccolieri, and S. Di Sabatino, 2012: The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas. Build. Environ., 56, 346360, doi:10.1016/j.buildenv.2012.03.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heffter, J. L., 1980: Air Resources Laboratories Atmospheric Transport and Dispersion Model (ARL-ATAD). NOAA Tech. Memo. ERL ARL-81, 17 pp. + appendixes, https://www.arl.noaa.gov/documents/reports/arl-81.pdf.

  • Hidalgo, J., V. Masson, A. Baklanov, G. Pigeon, and L. Gimeno, 2008: Advances in urban climate modeling. Ann. N. Y. Acad. Sci., 1146, 354374, doi:10.1196/annals.1446.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higashiyama, H., M. Sano, F. Nakanishi, O. Takahashi, and S. Tsukuma, 2016: Field measurements of road surface temperature of several asphalt pavements with temperature rise reducing function. Case Stud. Constr. Mater., 4, 7380, doi:10.1016/j.cscm.2016.01.001.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., B. Yu, Z. Chen, T. Li, and M. Liu, 2012: Numerical investigation on the urban heat island in an entire city with an urban porous media model. Atmos. Environ., 47, 509518, doi:10.1016/j.atmosenv.2011.09.064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichinose, T., K. Shimodozono, and K. Hanaki, 1999: Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ., 33, 38973909,doi:10.1016/S1352-2310(99)00132-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanda, M., T. Kawai, M. Kanega, R. Moriwaki, K. Narita, and A. Hagishima, 2005: Simple energy balance model for regular building arrays. Bound.-Layer Meteor., 116, 423443, doi:10.1007/s10546-004-7956-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawai, T., K. Ridwan, and M. Kanda, 2009: Evaluation of the simple urban energy balance model using selected data from 1-yr flux observations at two cities. J. Appl. Meteor. Climatol., 48, 693715, doi:10.1175/2008JAMC1891.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krayenhoff, E. S., and J. A. Voogt, 2007: A microscale three-dimensional urban energy balance model for studying surface temperatures. Bound.-Layer Meteor., 123, 433461, doi:10.1007/s10546-006-9153-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristóf, G., N. Rácz, and M. Balogh, 2009: Adaptation of pressure based CFD solvers for mesoscale atmospheric problems. Bound.-Layer Meteor., 131, 85103, doi:10.1007/s10546-008-9325-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl. Meteor., 43, 18991910, doi:10.1175/JAM2169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, doi:10.1023/A:1019207923078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. H., and S. U. Park, 2008: A vegetated urban canopy model for meteorological and environmental modelling. Bound.-Layer Meteor., 126, 73102, doi:10.1007/s10546-007-9221-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemonsu, A., V. Masson, and E. Berthier, 2007: Improvement of the hydrological component of an urban soil–vegetation–atmosphere–transfer model. Hydrol. Processes, 21, 21002111, doi:10.1002/hyp.6373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, F. S., and E. Yee, 2004: Numerical modelling of the turbulent flow developing within and over a 3-D building array, Part I: A high-resolution Reynolds-averaged Navier–Stokes approach. Bound.-Layer Meteor., 112, 427466, doi:10.1023/B:BOUN.0000030654.15263.35.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., S. P. Arya, W. H. Snyder, and R. E. Lawson Jr., 1997a: A laboratory study of the urban heat island in a calm and stably stratified environment. Part I: Temperature field. J. Appl. Meteor., 36, 13771391, doi:10.1175/1520-0450(1997)036<1377:ALSOTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., S. P. Arya, W. H. Snyder, and R. E. Lawson Jr., 1997b: A laboratory study of the urban heat island in a calm and stably stratified environment. Part II: Velocity field. J. Appl. Meteor., 36, 13921402, doi:10.1175/1520-0450(1997)036<1392:ALSOTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martilli, A., 2007: Current research and future challenges in urban mesoscale modelling. Int. J. Climatol., 27, 19091918, doi:10.1002/joc.1620.

  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357397, doi:10.1023/A:1002463829265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, V., 2006: Urban surface modeling and the meso-scale impact of cities. Theor. Appl. Climatol., 84, 3545, doi:10.1007/s00704-005-0142-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, M., 1993: Large eddy simulation of microburst winds flowing around a building. J. Wind Eng. Ind. Aerodyn., 46–47, 229237, doi:10.1016/0167-6105(93)90288-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1978: Boundary Layer Climates. Methuen and Co., 435 pp.

  • Oleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008: An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities. J. Appl. Meteor. Climatol., 47, 10381060, doi:10.1175/2007JAMC1597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piringer, M., and Coauthors, 2002: Investigating the surface energy balance in urban areas—Recent advances and future needs. Water Air Soil Pollut. Focus, 2, 116, doi:10.1023/A:1021302824331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riddle, A., D. Carruthers, A. Sharpe, C. McHugh, and J. Stocker, 2004: Comparisons between FLUENT and ADMS for atmospheric dispersion modelling. Atmos. Environ., 38, 10291038, doi:10.1016/j.atmosenv.2003.10.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 10011027, doi:10.1016/S1352-2310(99)00349-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, H. R., R. Bhardwaj, P. E. Phelan, J. S. Golden, and S. Grossman-Clarke, 2009: Development of a zero-dimensional mesoscale thermal model for urban climate. J. Appl. Meteor. Climatol., 48, 657668, doi:10.1175/2008JAMC1962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G., 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., doi:10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 670 pp.

    • Crossref
    • Export Citation
  • Swaid, H., and M. E. Hoffman, 1989: The prediction of impervious ground surface temperature by the surface thermal time constant (STTC) model. Energy Build., 13, 149157, doi:10.1016/0378-7788(89)90006-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., F. Chen, and H. Kusaka, 2006: Implementation and evaluation of a single-layer urban canopy model in WRF/Noah. Seventh WRF Users’ Workshop, Boulder, CO, UCAR, 5.6, http://www2.mmm.ucar.edu/wrf/users/workshops/WS2006/abstracts/Session05/5_6_Tewari.pdf.

  • Tominaga, Y., A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, and T. Shirasawa, 2008: AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind Eng. Ind. Aerodyn., 96, 17491761, doi:10.1016/j.jweia.2008.02.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toparlar, Y., B. Blocken, P. Vos, G. J. F. van Heijst, W. D. Janssen, T. van Hooff, H. Montazeri, and H. J. P. Timmermans, 2015: CFD simulation and validation of urban microclimate: A case study for Bergpolder Zuid, Rotterdam. Build. Environ., 83, 7990, doi:10.1016/j.buildenv.2014.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vining, K. C., 1990: Effects of weather on agricultural crops and livestock: An overview. Int. J. Environ. Stud., 36, 2739, doi:10.1080/00207239008710581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voogt, J. A., and T. R. Oke, 1997: Complete urban surface temperatures. J. Appl. Meteor., 36, 11171132, doi:10.1175/1520-0450(1997)036<1117:CUST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., 2009: The influence of thermally-induced mesoscale circulations on turbulence statistics over an idealized urban area under a zero background wind. Bound.-Layer Meteor., 131, 403423, doi:10.1007/s10546-009-9378-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and Y. Li, 2016: Predicting urban heat island circulation using CFD. Build. Environ., 99, 8297, doi:10.1016/j.buildenv.2016.01.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., Y. Li, and J. Hang, 2017: A combined fully-resolved and porous approach for building cluster wind flows. Build. Simul., 10, 97109, doi:10.1007/s12273-016-0305-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z. H., E. Bou-Zeid, and J. A. Smith, 2013: A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Quart. J. Roy. Meteor. Soc., 139, 16431657, doi:10.1002/qj.2032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, M., 2004: Analytic solutions for the land temperature in an Earth system model of intermediate complexity (No. 95). Southampton Oceanography Centre Internal Rep. 95, 6 pp., http://www1.quantum.leeds.ac.uk/~markw/papers/soc_radland.pdf.

  • Wullschleger, S. D., J. E. Cahoon, J. A. Ferguson, and D. M. Oosterhuis, 1991: SURFTEMP: Simulation of soil surface temperature using the energy balance equation. J. Agron. Educ., 20, 1115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Z., 2011: Modelling street-scale flow and dispersion in realistic winds—Towards coupling with mesoscale meteorological models. Bound.-Layer Meteor., 141, 5375, doi:10.1007/s10546-011-9629-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., and Y. Li, 2013: Development of a three-dimensional urban energy model for predicting and understanding surface temperature distribution. Bound.-Layer Meteor., 149, 303321, doi:10.1007/s10546-013-9842-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., and Y. Li, 2015: The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Build. Environ., 90, 146156, doi:10.1016/j.buildenv.2015.03.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeman, O., and J. L. Lumley, 1976: Modeling buoyancy driven mixed layers. J. Atmos. Sci., 33, 19741988, doi:10.1175/1520-0469(1976)033<1974:MBDML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, N., X. Wang, and Z. Peng, 2014: Large-eddy simulation of mesoscale circulations forced by inhomogeneous urban heat island. Bound.-Layer Meteor., 151, 179194, doi:10.1007/s10546-013-9879-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2200 1455 28
PDF Downloads 767 113 8