• Ahmadi-Givi, F., G. C. Graig, and R. S. Plant, 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Quart. J. Roy. Meteor. Soc., 130, 295323, https://doi.org/10.1256/qj.02.226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J., A. Pezza, and M. Black, 2010: Explosive cyclogenesis: A global climatology comparing multiple reanalyses. J. Climate, 23, 64686484, https://doi.org/10.1175/2010JCLI3437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., Y.-H. Kuo, and J. R. Gyakum, 1983: Numerical simulations of a case of explosive marine cyclogenesis. Mon. Wea. Rev., 111, 11741188, https://doi.org/10.1175/1520-0493(1983)111<1174:NSOACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azad, R., and A. Sorteberg, 2014: The vorticity budgets of North Atlantic winter extratropical cyclone life cycles in MERRA reanalysis. Part I: Development phase. J. Atmos. Sci., 71, 31093128, https://doi.org/10.1175/JAS-D-13-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., L. Thompson, J. Patoux, and K. A. Kelly, 2012: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Wea. Rev., 140, 12411256, https://doi.org/10.1175/MWR-D-11-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., 1981: The Presidents’ Day snowstorm of 18–19 February 1979: A subsynoptic-scale event. Mon. Wea. Rev., 109, 15421566, https://doi.org/10.1175/1520-0493(1981)109<1542:TPDSOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and S. C. Lin, 1984: A diagnostic analysis of the Presidents’ Day storm of February 1979. Mon. Wea. Rev., 112, 21482177, https://doi.org/10.1175/1520-0493(1984)112<2148:ADAOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bullock, T. A., and J. R. Gyakum, 1993: A diagnostic study of cyclogenesis in the western North Pacific Ocean. Mon. Wea. Rev., 121, 6575, https://doi.org/10.1175/1520-0493(1993)121<0065:ADSOCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cammas, J.-P., and D. Ramond, 1989: Analysis and diagnosis of the composite of ageostrophic circulations in jet-front systems. Mon. Wea. Rev., 117, 24472462, https://doi.org/10.1175/1520-0493(1989)117<2447:AADOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-J., Y.-H. Kuo, P.-Z. Zhang, and Q.-F. Bai, 1991: Synoptic climatology of cyclogenesis over East Asia, 1958–1987. Mon. Wea. Rev., 119, 14071418, https://doi.org/10.1175/1520-0493(1991)119<1407:SCOCOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-J., Y.-H. Kuo, P.-Z. Zhang, and Q.-F. Bai, 1992: Climatology of explosive cyclones off the East Asian coast. Mon. Wea. Rev., 120, 30293035, https://doi.org/10.1175/1520-0493(1992)120<3029:COECOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., C.-B. Chang, and D. J. Perkey, 1983: Numerical study of an AMTEX ’75 oceanic cyclone. Mon. Wea. Rev., 111, 18181829, https://doi.org/10.1175/1520-0493(1983)111<1818:NSOAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., C.-B. Chang, and D. J. Perkey, 1985: Synoptic study of a medium-scale oceanic cyclone during AMTEX ’75. Mon. Wea. Rev., 113, 349361, https://doi.org/10.1175/1520-0493(1985)113<0349:SSOAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367375, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danielson, R. E., J. R. Gyakum, and D. N. Straub, 2006a: A case study of downstream baroclinic development over the North Pacific Ocean. Part I: Dynamical impacts. Mon. Wea. Rev., 134, 15341548, https://doi.org/10.1175/MWR3172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danielson, R. E., J. R. Gyakum, and D. N. Straub, 2006b: A case study of downstream baroclinic development over the North Pacific Ocean. Part II: Diagnoses of eddy energy and wave activity. Mon. Wea. Rev., 134, 15491567, https://doi.org/10.1175/MWR3173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1988: Observational evidence for the influence of surface heat fluxes on rapid maritime cyclogenesis. Mon. Wea. Rev., 116, 26492659, https://doi.org/10.1175/1520-0493(1988)116<2649:OEFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573, https://doi.org/10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R., 1976: The effects of released latent heat in growing baroclinic waves. J. Atmos. Sci., 33, 16861701, https://doi.org/10.1175/1520-0469(1976)033<1686:TEORLH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., 1983a: On the evolution of the QE II storm. I: Synoptic aspects. Mon. Wea. Rev., 111, 11371155, https://doi.org/10.1175/1520-0493(1983)111<1137:OTEOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., 1983b: On the evolution of the QE II storm. II: Dynamic and thermodynamic structure. Mon. Wea. Rev., 111, 11561173, https://doi.org/10.1175/1520-0493(1983)111<1156:OTEOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., 1991: Meteorological precursors to the explosive intensification of the QE II storm. Mon. Wea. Rev., 119, 11051131, https://doi.org/10.1175/1520-0493(1991)119<1105:MPTTEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., and R. E. Danielson, 2000: Analysis of meteorological precursors to ordinary and explosive cyclogenesis in the western North Pacific. Mon. Wea. Rev., 128, 851863, https://doi.org/10.1175/1520-0493(2000)128<0851:AOMPTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., J. R. Anderson, R. H. Grumm, and E. L. Gruner, 1989: North Pacific cold-season surface cyclone activity: 1975–1983. Mon. Wea. Rev., 117, 11411155, https://doi.org/10.1175/1520-0493(1989)117<1141:NPCSSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirata, H., R. Kawamura, M. Kato, and T. Shinoda, 2015: Influential role of moisture supply from the Kuroshio/Kuroshio Extension in the rapid development of an extratropical cyclone. Mon. Wea. Rev., 143, 41264144, https://doi.org/10.1175/MWR-D-15-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschberg, P. A., and J. M. Fritsch, 1991: Tropopause undulations and the development of extratropical cyclones. Part I: Overview and observations from a cyclone event. Mon. Wea. Rev., 119, 496550, https://doi.org/10.1175/1520-0493(1991)119<0496:TUATDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hotta, D., and H. Nakamura, 2011: On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. J. Climate, 24, 33773401, https://doi.org/10.1175/2010JCLI3910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iizuka, S., M. Shiota, R. Kawamura, and H. Hatsushika, 2013: Influence of the monsoon variability and sea surface temperature front on the explosive cyclone activity in the vicinity of Japan during northern winter. SOLA, 9, 14, http://doi.org/10.2151/sola.2013-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwao, K., M. Inatsu, and M. Kimoto, 2012: Recent changes in explosively developing extratropical cyclones over the winter northwestern Pacific. J. Climate, 25, 72827296, https://doi.org/10.1175/JCLI-D-11-00373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce, Y.-O. Kwon, and M. F. Cronin, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 56445667, https://doi.org/10.1175/2010JCLI3346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452499, https://doi.org/10.1175/1520-0493(1986)114<0452:AROTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., R. J. Reed, and S. Low-Nam, 1991a: Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Mon. Wea. Rev., 119, 457476, https://doi.org/10.1175/1520-0493(1991)119<0457:EOSEFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., M. A. Shapiro, and E. G. Donall, 1991b: The interaction between baroclinic and diabatic processes in a numerical simulation of rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119, 368384, https://doi.org/10.1175/1520-0493(1991)119<0368:TIBBAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., and Y. Asuma, 2008: Numerical study of explosively developing extratropical cyclones in the northwestern Pacific region. Mon. Wea. Rev., 136, 712740, https://doi.org/10.1175/2007MWR2111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., and T. Enomoto, 2013: Predictability of explosive cyclogenesis over the northwestern Pacific region using ensemble reanalysis. Mon. Wea. Rev., 141, 37693785, https://doi.org/10.1175/MWR-D-12-00161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. Thompson, 2010: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 32493281, https://doi.org/10.1175/2010JCLI3343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., and I. Simmonds, 2002: Explosive cyclone development in the Southern Hemisphere and a comparison with Northern Hemisphere events. Mon. Wea. Rev., 130, 21882209, https://doi.org/10.1175/1520-0493(2002)130<2188:ECDITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lupo, A. R., P. J. Smith, and P. Zwack, 1992: A diagnosis of the explosive development of two extratropical cyclones. Mon. Wea. Rev., 120, 14901523, https://doi.org/10.1175/1520-0493(1992)120<1490:ADOTED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macdonald, B. C., and E. R. Reiter, 1988: Explosive cyclogenesis over the eastern United States. Mon. Wea. Rev., 116, 15681586, https://doi.org/10.1175/1520-0493(1988)116<1568:ECOTEU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manobianco, J., 1989: Explosive east coast cyclogenesis over the west-central North Atlantic Ocean: A composite study derived from ECMWF operational analyses. Mon. Wea. Rev., 117, 23652383, https://doi.org/10.1175/1520-0493(1989)117<2365:EECCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullen, S. L., and D. P. Baumhefner, 1988: Sensitivity of numerical simulations of explosive oceanic cyclogenesis to changes in physical parameterizations. Mon. Wea. Rev., 116, 22892329, https://doi.org/10.1175/1520-0493(1988)116<2289:SONSOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murty, T., G. McBean, and B. McKee, 1983: Explosive cyclogenesis over the northeast Pacific Ocean. Mon. Wea. Rev., 111, 11311135, https://doi.org/10.1175/1520-0493(1983)111<1131:ECOTNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49, 16291642, https://doi.org/10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1993: Horizontal divergence associated with zonally isolated jet streams. J. Atmos. Sci., 50, 23102313, https://doi.org/10.1175/1520-0469(1993)050<2310:HDAWZI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and M. A. Shapiro, 1993: The life cycle of an extratropical marine cyclone. Part I: Frontal-cyclone evolution and thermodynamic air–sea interaction. Mon. Wea. Rev., 121, 21532176, https://doi.org/10.1175/1520-0493(1993)121<2153:TLCOAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neu, U., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, https://doi.org/10.1175/BAMS-D-11-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuss, W. A., and S. I. Kamikawa, 1990: Dynamics and boundary layer processes in two Asian cyclones. Mon. Wea. Rev., 118, 755771, https://doi.org/10.1175/1520-0493(1990)118<0755:DABLPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reader, M. C., and G. W. K. Moore, 1995: Stratosphere–troposphere interactions associated with a case of explosive cyclogenesis in the Labrador Sea. Tellus, 47A, 849863, https://doi.org/10.3402/tellusa.v47i5.11579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., G. A. Grall, and Y.-H. Kuo, 1993: The ERICA IOP 5 storm. Part II: Sensitivity tests and further diagnosis based on model output. Mon. Wea. Rev., 121, 15951612, https://doi.org/10.1175/1520-0493(1993)121<1595:TEISPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rice, R. B., 1979: Tracking a killer storm. Sail, October issue, 106–107.

  • Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. Mon. Wea. Rev., 112, 15771589, https://doi.org/10.1175/1520-0493(1984)112<1577:SAAUCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E., and L. F. Bosart, 1986: An investigation of explosively deepening oceanic cyclones. Mon. Wea. Rev., 114, 702718, https://doi.org/10.1175/1520-0493(1986)114<0702:AIOEDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1986: Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–84. Part I: Composite structure and mean behavior. Mon. Wea. Rev., 114, 17811794, https://doi.org/10.1175/1520-0493(1986)114<1781:ECITWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., and C. A. Davis, 1988: Patterns of thickness anomaly for explosive cyclogenesis over the west-central North Atlantic Ocean. Mon. Wea. Rev., 116, 27252730, https://doi.org/10.1175/1520-0493(1988)116<2725:POTAFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiler, C., and F. W. Zwiers, 2016: How well do CMIP5 climate models reproduce explosive cyclones in the extratropics of the Northern Hemisphere? Climate Dyn., 46, 12411256, https://doi.org/10.1007/s00382-015-2642-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., 1995: Climatological aspects of cyclone development and decay in the Arctic. Atmos.–Ocean, 33, 123, https://doi.org/10.1080/07055900.1995.9649522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1994: An objective cyclone climatology for the Southern Hemisphere. Mon. Wea. Rev., 122, 22392256, https://doi.org/10.1175/1520-0493(1994)122<2239:AOCCFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1997: Objective identification of cyclones and their circulation intensity, and climatology. Wea. Forecasting, 12, 595612, https://doi.org/10.1175/1520-0434(1997)012<0595:OIOCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, I., H. Niino, M. D. Yamanaka, and S. Fukao, 1996: An observational study of cyclogenesis in the lee of the Japan central mountains. Meteor. Atmos. Phys., 61, 3953, https://doi.org/10.1007/BF01029710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and P. J. Kocin, 1987: The interaction of jet streak circulations during heavy snow events along the east coast of United States. Wea. Forecasting, 2, 289308, https://doi.org/10.1175/1520-0434(1987)002<0289:TIOJSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., D. Keyser, K. F. Brill, and C. H. Wash, 1985: The Presidents’ Day cyclone of 18–19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon. Wea. Rev., 113, 962988, https://doi.org/10.1175/1520-0493(1985)113<0962:TPDCOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., and J. C. Rogers, 2001: A composite study of explosive cyclogenesis in different sectors of the North Atlantic. Part I: Cyclone structure and evolution. Mon. Wea. Rev., 129, 14811499, https://doi.org/10.1175/1520-0493(2001)129<1481:ACSOEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wash, C. H., J. E. Peak, W. E. Calland, and W. A. Cook, 1988: Diagnostic study of explosive cyclogenesis during FGGE. Mon. Wea. Rev., 116, 431451, https://doi.org/10.1175/1520-0493(1988)116<0431:DSOECD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and C. A. Davis, 1994: Cyclogenesis in a saturated environment. J. Atmos. Sci., 51, 889907, https://doi.org/10.1175/1520-0469(1994)051<0889:CIASE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, A., and Y. Asuma, 2004: Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific region. Mon. Wea. Rev., 132, 11211142, https://doi.org/10.1175/1520-0493(2004)132<1121:SAEOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshiike, S., and R. Kawamura, 2009: Influence of wintertime large-scale circulation on the explosively developing cyclones over the western North Pacific and their downstream effects. J. Geophys. Res., 114, D13110, https://doi.org/10.1029/2009JD011820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zehnder, J., and D. Keyser, 1991: The influence of interior gradients of potential vorticity on rapid cyclogenesis. Tellus, 43A, 198212, https://doi.org/10.3402/tellusa.v43i3.11927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziv, B., and N. Paldor, 1999: The divergence fields associated with time-dependent jet streams. J. Atmos. Sci., 56, 18431857, https://doi.org/10.1175/1520-0469(1999)056<1843:TDFAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 14
PDF Downloads 13 13 13

Characteristics of Explosive Cyclones over the Northern Pacific

View More View Less
  • 1 Key Laboratory of Physical Oceanography, Ocean–Atmosphere Interaction and Climate Laboratory, Department of Marine Meteorology, Ocean University of China, Qingdao, China
  • | 2 Key Laboratory of Physical Oceanography, Ocean–Atmosphere Interaction and Climate Laboratory, Department of Marine Meteorology, Ocean University of China, and Division of Oceanic Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • | 3 National Science Foundation, Arlington, Virginia
  • | 4 Key Laboratory of Physical Oceanography, Ocean–Atmosphere Interaction and Climate Laboratory, Department of Marine Meteorology, Ocean University of China, Qingdao, China
Restricted access

Abstract

Explosive cyclones (ECs) over the northern Pacific Ocean during the cold season (October–April) over a 15-yr (2000–15) period are analyzed by using the Final (FNL) Analysis data provided by the National Centers for Environmental Prediction. These ECs are stratified into four categories according to their intensity: weak, moderate, strong, and super ECs. In addition, according to the spatial distribution of their maximum-deepening-rate positions, ECs are further classified into five regions: the Japan–Okhotsk Sea (JOS), the northwestern Pacific (NWP), the west-central Pacific (WCP), the east-central Pacific (ECP), and the northeastern Pacific (NEP). The occurrence frequency of ECs shows evident seasonal variations for the various regions over the northern Pacific. NWP ECs frequently occur in winter and early spring, WCP and ECP ECs frequently occur in winter, and JOS and NEP ECs mainly occur in autumn and early spring. The occurrence frequency, averaged maximum deepening rate, and developing and explosive-developing lifetimes of ECs decrease eastward over the northern Pacific, excluding JOS ECs, consistent with the climatological intensity distributions of the upper-level jet stream, midlevel positive vorticity, and low-level baroclinicity. On the seasonal scale, the occurrence frequency and spatial distribution of ECs are highly correlated with the intensity and position of the upper-level jet stream, respectively, and also with those of midlevel positive vorticity and low-level baroclinicity. Over the northwestern Pacific, the warm ocean surface also contributes to the rapid development of ECs. The composite analysis indicates that the large-scale atmospheric environment for NWP and NEP ECs shows significant differences from that for the 15-yr cold-season average. The southwesterly anomalies of the upper-level jet stream and positive anomalies of midlevel vorticity favor the prevalence of NWP and NEP ECs.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Gang Fu, fugang@ouc.edu.cn

Abstract

Explosive cyclones (ECs) over the northern Pacific Ocean during the cold season (October–April) over a 15-yr (2000–15) period are analyzed by using the Final (FNL) Analysis data provided by the National Centers for Environmental Prediction. These ECs are stratified into four categories according to their intensity: weak, moderate, strong, and super ECs. In addition, according to the spatial distribution of their maximum-deepening-rate positions, ECs are further classified into five regions: the Japan–Okhotsk Sea (JOS), the northwestern Pacific (NWP), the west-central Pacific (WCP), the east-central Pacific (ECP), and the northeastern Pacific (NEP). The occurrence frequency of ECs shows evident seasonal variations for the various regions over the northern Pacific. NWP ECs frequently occur in winter and early spring, WCP and ECP ECs frequently occur in winter, and JOS and NEP ECs mainly occur in autumn and early spring. The occurrence frequency, averaged maximum deepening rate, and developing and explosive-developing lifetimes of ECs decrease eastward over the northern Pacific, excluding JOS ECs, consistent with the climatological intensity distributions of the upper-level jet stream, midlevel positive vorticity, and low-level baroclinicity. On the seasonal scale, the occurrence frequency and spatial distribution of ECs are highly correlated with the intensity and position of the upper-level jet stream, respectively, and also with those of midlevel positive vorticity and low-level baroclinicity. Over the northwestern Pacific, the warm ocean surface also contributes to the rapid development of ECs. The composite analysis indicates that the large-scale atmospheric environment for NWP and NEP ECs shows significant differences from that for the 15-yr cold-season average. The southwesterly anomalies of the upper-level jet stream and positive anomalies of midlevel vorticity favor the prevalence of NWP and NEP ECs.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Gang Fu, fugang@ouc.edu.cn
Save