• Antonia, R. A., 1981: Conditional sampling in turbulence measurement. Annu. Rev. Fluid Mech., 13, 131156, https://doi.org/10.1146/annurev.fl.13.010181.001023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., and T. P. Meyers, 1988: Turbulence structure in a deciduous forest. Bound.-Layer Meteor., 43, 345364, https://doi.org/10.1007/BF00121712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banerjee, T., and G. G. Katul, 2013: Logarithmic scaling in the longitudinal velocity variance explained by a spectral budget. Phys. Fluids, 25, 125106, https://doi.org/10.1063/1.4837876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banerjee, T., G. G. Katul, S. Fontan, D. Poggi, and M. Kumar, 2013: Mean flow near edges and within cavities situated inside dense canopies. Bound.-Layer Meteor., 149, 1941, https://doi.org/10.1007/s10546-013-9826-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and J. C. R. Hunt, 1998: Turbulent flow over hills and waves. Annu. Rev. Fluid Mech., 30, 507538, https://doi.org/10.1146/annurev.fluid.30.1.507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cava, D., G. Katul, A. Scrimieri, D. Poggi, A. Cescatti, and U. Giostra, 2006: Buoyancy and the sensible heat flux budget within dense canopies. Bound.-Layer Meteor., 118, 217240, https://doi.org/10.1007/s10546-005-4736-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-S., and J. L. Lumley, 2001: The return to isotropy of homogeneous turbulence. J. Fluid Mech., 436, 5984, https://doi.org/10.1017/S002211200100386X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denmead, O. T., and E. F. Bradley, 1985: Flux-gradient relationships in a forest canopy. The Forest–Atmosphere Interaction, B. A. Hutchison and B. B. Hicks, Eds., Springer, 421–442.

    • Crossref
    • Export Citation
  • Dias-Junior, C. Q., E. P. Marques Filho, and L. D. A. , 2015: A large eddy simulation model applied to analyze the turbulent flow above Amazon forest. J. Wind Eng. Ind. Aerodyn., 147, 143153, https://doi.org/10.1016/j.jweia.2015.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dupont, S., and Y. Brunet, 2009: Coherent structures in canopy edge flow: A large-eddy simulation study. J. Fluid Mech., 630, 93128, https://doi.org/10.1017/S0022112009006739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dwyer, M. J., E. G. Patton, and R. H. Shaw, 1997: Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Bound.-Layer Meteor., 84, 2343, https://doi.org/10.1023/A:1000301303543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., 1979: Turbulence in waving wheat. II. Structure of momentum transfer. Bound.-Layer Meteor., 16, 213236, https://doi.org/10.1007/BF03335367.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., 2000: Turbulence in plant canopies. Annu. Rev. Fluid Mech., 32, 519571, https://doi.org/10.1146/annurev.fluid.32.1.519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzmaurice, L., R. H. Shaw, K. T. Paw U, and E. G. Patton, 2004: Three-dimensional scalar microfront systems in a large-eddy simulation of vegetation canopy flow. Bound.-Layer Meteor., 112, 107127, https://doi.org/10.1023/B:BOUN.0000020159.98239.4a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenkiel, F. N., and P. S. Klebanoff, 1967: Higher-order correlations in a turbulent field. Phys. Fluids, 10, 507520, https://doi.org/10.1063/1.1762145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, W., R. Shaw, and K. T. Paw U, 1989: Observation of organized structure in turbulent flow within and above a forest canopy. Bound.-Layer Meteor., 47, 349377, https://doi.org/10.1007/BF00122339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghannam, K., T. Duman, S. T. Salesky, M. Chamecki, and G. Katul, 2016: The non-local character of turbulence asymmetry in the convective atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 143, 494507, https://doi.org/10.1002/qj.2937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

    • Crossref
    • Export Citation
  • Kanda, M., and M. Hino, 1994: Organized structures in developing turbulent flow within and above a plant canopy, using a large eddy simulation. Bound.-Layer Meteor., 68, 237257, https://doi.org/10.1007/BF00705599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G. G., 1998: An investigation of higher-order closure models for a forested canopy. Bound.-Layer Meteor., 89, 4774, https://doi.org/10.1023/A:1001509106381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G. G., and J. D. Albertson, 1999: Modeling CO2 sources, sinks, and fluxes within a forest canopy. J. Geophys. Res., 104, 60816091, https://doi.org/10.1029/1998JD200114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G. G., and W.-H. Chang, 1999: Principal length scales in second-order closure models for canopy turbulence. J. Appl. Meteor., 38, 16311643, https://doi.org/10.1175/1520-0450(1999)038<1631:PLSISO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G. G., L. Mahrt, D. Poggi, and C. Sanz, 2004: One- and two-equation models for canopy turbulence. Bound.-Layer Meteor., 113, 81109, https://doi.org/10.1023/B:BOUN.0000037333.48760.e5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G. G., D. Poggi, D. Cava, and J. Finnigan, 2006: The relative importance of ejections and sweeps to momentum transfer in the atmospheric boundary layer. Bound.-Layer Meteor., 120, 367375, https://doi.org/10.1007/s10546-006-9064-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G. G., D. Cava, M. Siqueira, and D. Poggi, 2013: Scalar turbulence within the canopy sublayer. Coherent Flow Structures at Earth’s Surface, J. G. Venditti et al., Eds., John Wiley and Sons, 73–95.

    • Crossref
    • Export Citation
  • Katul, G. G., D. Li, H. Liu, and S. Assouline, 2016: Deviations from unity of the ratio of the turbulent Schmidt to Prandtl numbers in stratified atmospheric flows over water surfaces. Phys. Rev. Fluids, 1, 034401, https://doi.org/10.1103/PhysRevFluids.1.034401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Launder, B. E., G. J. Reece, and W. Rodi, 1975: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech., 68, 537566, https://doi.org/10.1017/S0022112075001814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Launiainen, S., and Coauthors, 2007: Vertical variability and effect of stability on turbulence characteristics down to the floor of a pine forest. Tellus, 59B, 919936, https://doi.org/10.1111/j.1600-0889.2007.00313.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leclerc, M. Y., R. H. Shaw, G. Den Hartog, and H. H. Neumann, 1990: The influence of atmospheric stability on the budgets of the Reynolds stress and turbulent kinetic energy within and above a deciduous forest. J. Appl. Meteor., 29, 916933, https://doi.org/10.1175/1520-0450(1990)029<0916:TIOASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leclerc, M. Y., K. C. Beissner, R. H. Shaw, G. Den Hartog, and H. H. Neumann, 1991: The influence of buoyancy on third-order turbulent velocity statistics within a deciduous forest. Bound.-Layer Meteor., 55, 109123, https://doi.org/10.1007/BF00119329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maronga, B., and Coauthors, 2015: The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geosci. Model Dev., 8, 25152551, https://doi.org/10.5194/gmd-8-2515-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and J. C. Wyngaard, 1988: Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci., 45, 35733587, https://doi.org/10.1175/1520-0469(1988)045<3573:SAOLES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakagawa, H., and I. Nezu, 1977: Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows. J. Fluid Mech., 80, 99128, https://doi.org/10.1017/S0022112077001554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, E. G., and G. G. Katul, 2009: Turbulent pressure and velocity perturbations induced by gentle hills covered with sparse and dense canopies. Bound.-Layer Meteor., 133, 189217, https://doi.org/10.1007/s10546-009-9427-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, R. H. Shaw, J. J. Finnigan, and J. C. Weil, 2016: Atmospheric stability influences on coupled boundary layer and canopy turbulence. J. Atmos. Sci., 73, 16211647, https://doi.org/10.1175/JAS-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poggi, D., and G. Katul, 2007: The ejection-sweep cycle over bare and forested gentle hills: A laboratory experiment. Bound.-Layer Meteor., 122, 493515, https://doi.org/10.1007/s10546-006-9117-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poggi, D., G. Katul, and J. D. Albertson, 2004a: Momentum transfer and turbulent kinetic energy budgets within a dense model canopy. Bound.-Layer Meteor., 111, 589614, https://doi.org/10.1023/B:BOUN.0000016502.52590.af.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poggi, D., A. Porporato, L. Ridolfi, J. D. Albertson, and G. G. Katul, 2004b: The effect of vegetation density on canopy sub-layer turbulence. Bound.-Layer Meteor., 111, 565587, https://doi.org/10.1023/B:BOUN.0000016576.05621.73.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poggi, D., G. Katul, and J. Albertson, 2006: Scalar dispersion within a model canopy: Measurements and three-dimensional Lagrangian models. Adv. Water Resour., 29, 326335, https://doi.org/10.1016/j.advwatres.2004.12.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

    • Crossref
    • Export Citation
  • Raasch, S., and M. Schröter, 2001: PALM—A large-eddy simulation model performing on massively parallel computers. Meteor. Z., 10, 363372, https://doi.org/10.1127/0941-2948/2001/0010-0363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., 1981: Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J. Fluid Mech., 108, 363382, https://doi.org/10.1017/S0022112081002164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., 1989: Applying Lagrangian fluid mechanics to infer scalar source distributions from concentration profiles in plant canopies. Agric. For. Meteor., 47, 85108, https://doi.org/10.1016/0168-1923(89)90089-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., and A. S. Thom, 1981: Turbulence in and above plant canopies. Annu. Rev. Fluid Mech., 13, 97129, https://doi.org/10.1146/annurev.fl.13.010181.000525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., P. A. Coppin, and B. J. Legg, 1986: Experiments on scalar dispersion within a model plant canopy part I: The turbulence structure. Bound.-Layer Meteor., 35, 2152, https://doi.org/10.1007/BF00117300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., J. J. Finnigan, and Y. Brunei, 1996: Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Bound.-Layer Meteor., 78, 351382, https://doi.org/10.1007/BF00120941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, A. N., 2008: Large-eddy simulations of flow over forested ridges. Bound.-Layer Meteor., 128, 5976, https://doi.org/10.1007/s10546-008-9278-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saiki, E. M., C.-H. Moeng, and P. P. Sullivan, 2000: Large-eddy simulation of the stably stratified planetary boundary layer. Bound.-Layer Meteor., 95, 130, https://doi.org/10.1023/A:1002428223156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, R. H., and U. Schumann, 1992: Large-eddy simulation of turbulent flow above and within a forest. Bound.-Layer Meteor., 61, 4764, https://doi.org/10.1007/BF02033994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, R. H., K. T. Paw U, and W. Gao, 1989: Detection of temperature ramps and flow structures at a deciduous forest site. Agric. For. Meteor., 47, 123138, https://doi.org/10.1016/0168-1923(89)90091-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., and R. J. Gurney, 1990: The theoretical relationship between foliage temperature and canopy resistance in sparse crops. Quart. J. Roy. Meteor. Soc., 116, 497519, https://doi.org/10.1002/qj.49711649213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siqueira, M., and G. Katul, 2002: Estimating heat sources and fluxes in thermally stratified canopy flows using higher-order closure models. Bound.-Layer Meteor., 103, 125142, https://doi.org/10.1023/A:1014526305879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siqueira, M., C.-T. Lai, and G. Katul, 2000: Estimating scalar sources, sinks, and fluxes in a forest canopy using Lagrangian, Eulerian, and hybrid inverse models. J. Geophys. Res., 105, 29 47529 488, https://doi.org/10.1029/2000JD900543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H.-B., R. H. Shaw, K. T. Paw U, C.-H. Moeng, and P. P. Sullivan, 1998: Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Bound.-Layer Meteor., 88, 363397, https://doi.org/10.1023/A:1001108411184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 2016: Quadrant analysis in turbulence research: History and evolution. Annu. Rev. Fluid Mech., 48, 131158, https://doi.org/10.1146/annurev-fluid-122414-034550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, T., 2004: Large-eddy simulation of coherent turbulence structures associated with scalar ramps over plant canopies. Bound.-Layer Meteor., 112, 307341, https://doi.org/10.1023/B:BOUN.0000027912.84492.54.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. D., 1988: A second-order closure model for flow through vegetation. Bound.-Layer Meteor., 42, 371392, https://doi.org/10.1007/BF00121591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. D., 1989: Turbulent transport within the plant canopy. Estimation of Areal Evapotranspiration, T. A. Black et al., Eds., IAHS Publ. 177, 43–80.

  • Wilson, N. R., and R. H. Shaw, 1977: A higher order closure model for canopy flow. J. Appl. Meteor., 16, 11971205, https://doi.org/10.1175/1520-0450(1977)016<1197:AHOCMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 1984: Boundary-layer modeling. Atmospheric Turbulence and Air Pollution Modelling, F. T. M. Nieuwstadt and H. van Dop, Eds., Atmospheric Sciences Library, Vol. 1, Springer, 69–106.

    • Crossref
    • Export Citation
  • Zhuang, Y., and B. D. Amiro, 1994: Pressure fluctuations during coherent motions and their effects on the budgets of turbulent kinetic energy and momentum flux within a forest canopy. J. Appl. Meteor., 33, 704711, https://doi.org/10.1175/1520-0450(1994)033<0704:PFDCMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 206 106 0
PDF Downloads 229 146 0

Connecting the Failure of K Theory inside and above Vegetation Canopies and Ejection–Sweep Cycles by a Large-Eddy Simulation

View More View Less
  • 1 Institute of Atmospheric Environmental Research, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
Restricted access

Abstract

Parameterizations of biosphere–atmosphere interaction processes in climate models and other hydrological applications require characterization of turbulent transport of momentum and scalars between vegetation canopies and the atmosphere, which is often modeled using a turbulent analogy to molecular diffusion processes. Simple flux–gradient approaches (K theory) fail for canopy turbulence, however. One cause is turbulent transport by large coherent eddies at the canopy scale, which can be linked to sweep–ejection events and bear signatures of nonlocal organized eddy motions. The K theory, which parameterizes the turbulent flux or stress proportional to the local concentration or velocity gradient, fails to account for these nonlocal organized motions. The connection to sweep–ejection cycles and the local turbulent flux can be traced back to the turbulence triple moment . In this work, large-eddy simulation is used to investigate the diagnostic connection between the failure of K theory and sweep–ejection motions. Analyzed schemes are quadrant analysis and complete and incomplete cumulant expansion methods. The latter approaches introduce a turbulence time scale in the modeling. Furthermore, it is found that the momentum flux and sensible heat flux need different formulations for the turbulence time scale. Accounting for buoyancy in stratified conditions is also deemed important in addition to accounting for nonlocal events to predict the correct momentum or scalar fluxes.

Current affiliation: Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tirtha Banerjee, tirtha.banerjee@lanl.gov

Abstract

Parameterizations of biosphere–atmosphere interaction processes in climate models and other hydrological applications require characterization of turbulent transport of momentum and scalars between vegetation canopies and the atmosphere, which is often modeled using a turbulent analogy to molecular diffusion processes. Simple flux–gradient approaches (K theory) fail for canopy turbulence, however. One cause is turbulent transport by large coherent eddies at the canopy scale, which can be linked to sweep–ejection events and bear signatures of nonlocal organized eddy motions. The K theory, which parameterizes the turbulent flux or stress proportional to the local concentration or velocity gradient, fails to account for these nonlocal organized motions. The connection to sweep–ejection cycles and the local turbulent flux can be traced back to the turbulence triple moment . In this work, large-eddy simulation is used to investigate the diagnostic connection between the failure of K theory and sweep–ejection motions. Analyzed schemes are quadrant analysis and complete and incomplete cumulant expansion methods. The latter approaches introduce a turbulence time scale in the modeling. Furthermore, it is found that the momentum flux and sensible heat flux need different formulations for the turbulence time scale. Accounting for buoyancy in stratified conditions is also deemed important in addition to accounting for nonlocal events to predict the correct momentum or scalar fluxes.

Current affiliation: Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tirtha Banerjee, tirtha.banerjee@lanl.gov
Save