• Acevedo, O. C., and D. R. Fitzjarrald, 2001: The early evening surface-layer transition: Temporal and spatial variability. J. Atmos. Sci., 58, 26502667, https://doi.org/10.1175/1520-0469(2001)058<2650:TEESLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., 2008: Transitional, entraining, cloudy, and coastal boundary layers. Acta Geophys., 56, 220, https://doi.org/10.2478/s11600-007-0035-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., H. K. Baltink, and F. C. Bosveld, 2001: Observations of the morning transition of the convective boundary layer. Bound.-Layer Meteor., 101, 209227, https://doi.org/10.1023/A:1019264716195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bange, J., T. Spieß, and A. van den Kroonenberg, 2007: Characteristics of the early-morning shallow convective boundary layer from Helipod flights during STINHO-2. Theor. Appl. Climatol., 90, 113126, https://doi.org/10.1007/s00704-006-0272-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basu, S., J.-F. Vinuesa, and A. Swift, 2008: Dynamic LES modeling of a diurnal cycle. J. Appl. Meteor. Climatol., 47, 11561174, https://doi.org/10.1175/2007JAMC1677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beare, R. J., 2008: The role of shear in the morning transition boundary layer. Bound.-Layer Meteor., 129, 395410, https://doi.org/10.1007/s10546-008-9324-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blay-Carreras, E., E. R. Pardyjak, D. Pino, D. C. Alexander, F. Lohou, and M. Lothon, 2014: Countergradient heat flux observations during the evening transition period. Atmos. Chem. Phys., 14, 90779085, https://doi.org/10.5194/acp-14-9077-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brazel, A. J., H. J. S. Fernando, J. C. R. Hunt, N. Selover, B. C. Hedquist, and E. Pardyjak, 2005: Evening transition observations in Phoenix, Arizona. J. Appl. Meteor., 44, 99112, https://doi.org/10.1175/JAM-2180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., and J. D. Horel, 2010: Sea and lake breezes: A review of numerical studies. Bound.-Layer Meteor., 137, 129, https://doi.org/10.1007/s10546-010-9517-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and Coauthors, 2016: Estimation of the advection effects induced by surface heterogeneities in the surface energy budget. Atmos. Chem. Phys., 16, 94899504, https://doi.org/10.5194/acp-16-9489-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., and Coauthors, 2015: The MATERHORN: Unraveling the intricacies of mountain weather. Bull. Amer. Meteor. Soc., 96, 19451967, https://doi.org/10.1175/BAMS-D-13-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1990: The internal boundary layer—A review. Bound.-Layer Meteor., 50, 171203, https://doi.org/10.1007/BF00120524.

  • Garratt, J. R., 1994: Review: The atmospheric boundary layer. Earth-Sci. Rev., 37, 89134, https://doi.org/10.1016/0012-8252(94)90026-4.

  • Goulart, A. G., B. E. J. Bodmann, M. T. M. B. de Vilhena, P. M. M. Soares, and D. M. Moreira, 2011: On the time evolution of the turbulent kinetic energy spectrum for decaying turbulence in the convective boundary layer. Bound.-Layer Meteor., 138, 6175, https://doi.org/10.1007/s10546-010-9546-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, A., A. van de Boer, A. Moene, and H. Vereecken, 2014: Intercomparison of methods for the simultaneous estimation of zero-plane displacement and aerodynamic roughness length from single-level eddy-covariance data. Bound.-Layer Meteor., 151, 373387, https://doi.org/10.1007/s10546-013-9905-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., 1997: An observational study of the evening transition boundary-layer. Quart. J. Roy. Meteor. Soc., 123, 657677, https://doi.org/10.1002/qj.49712353907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, https://doi.org/10.1175/BAMS-D-11-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howell, J. F., and L. Mahrt, 1997: Multiresolution flux decomposition. Bound.-Layer Meteor., 83, 117137, https://doi.org/10.1023/A:1000210427798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, C.-I., G. Katul, and T.-W. Chi, 2000: An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water Resour., 23, 765772, https://doi.org/10.1016/S0309-1708(99)00042-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, D. D., D. F. Nadeau, S. W. Hoch, and E. R. Pardyjak, 2016: Observations of near-surface heat-flux and temperature profiles through the early evening transition over contrasting surfaces. Bound.-Layer Meteor., 159, 567587, https://doi.org/10.1007/s10546-015-0067-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G. G., and M. B. Parlange, 1995: The spatial structure of turbulence at production wavenumbers using orthonormal wavelets. Bound.-Layer Meteor., 75, 81108, https://doi.org/10.1007/BF00721045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1968: Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers. Phys.-Usp., 10, 734746, https://doi.org/10.1070/PU1968v010n06ABEH003710.

    • Search Google Scholar
    • Export Citation
  • Kumar, V., J. Kleissl, C. Meneveau, and M. B. Parlange, 2006: Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: Atmospheric stability and scaling issues. Water Resour. Res., 42, W06D09, https://doi.org/10.1029/2005WR004651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lampert, A., and Coauthors, 2016: A study of local turbulence and anisotropy during the afternoon and evening transition with an unmanned aerial system and mesoscale simulation. Atmos. Chem. Phys., 16, 80098021, https://doi.org/10.5194/acp-16-8009-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapworth, A., 2006: The morning transition of the nocturnal boundary layer. Bound.-Layer Meteor., 119, 501526, https://doi.org/10.1007/s10546-005-9046-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., B. B. Stankov, and L. Mahrt, 1979: The rapid morning boundary-layer transition. J. Atmos. Sci., 36, 21082124, https://doi.org/10.1175/1520-0469(1979)036<2108:TRMBLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lothon, M., and Coauthors, 2014: The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys., 14, 10 93110 960, https://doi.org/10.5194/acp-14-10931-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manoj, M. G., P. C. S. Devara, and S. Taraphdar, 2013: Lidar investigation of tropical nocturnal boundary layer aerosols and cloud macrophysics. Atmos. Res., 132–133, 6575, https://doi.org/10.1016/j.atmosres.2013.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nadeau, D. F., E. R. Pardyjak, C. W. Higgins, H. J. S. Fernando, and M. B. Parlange, 2011: A simple model for the afternoon and early evening decay of convective turbulence over different land surfaces. Bound.-Layer Meteor., 141, 301324, https://doi.org/10.1007/s10546-011-9645-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Meteorological Service of Belize, 2016: The Climate of Belize. Climate Summary, http://hydromet.gov.bz/climatology/climate-summary.

  • Nieuwstadt, F. T. M., and R. A. Brost, 1986: The decay of convective turbulence. J. Atmos. Sci., 43, 532546, https://doi.org/10.1175/1520-0469(1986)043<0532:TDOCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nilsson, E., F. Lohou, M. Lothon, E. Pardyjak, L. Mahrt, and C. Darbieu, 2016a: Turbulence kinetic energy budget during the afternoon transition—Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days. Atmos. Chem. Phys., 16, 88498872, https://doi.org/10.5194/acp-16-8849-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nilsson, E., M. Lothon, F. Lohou, E. Pardyjak, O. Hartogensis, and C. Darbieu, 2016b: Turbulence kinetic energy budget during the afternoon transition—Part 2: A simple TKE model. Atmos. Chem. Phys., 16, 88738898, https://doi.org/10.5194/acp-16-8873-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parameswaran, K., K. Rajeev, and K. Sen Gupta, 1997: An observational study of night time aerosol concentrations in the lower atmosphere at a tropical coastal station. J. Atmos. Sol.-Terr. Phys., 59, 17271737, https://doi.org/10.1016/S1364-6826(97)00013-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pino, D., H. J. J. Jonker, J. V.-G. de Arellano, and A. Dosio, 2006: Role of shear and the inversion strength during sunset turbulence over land: Characteristic length scales. Bound.-Layer Meteor., 121, 537556, https://doi.org/10.1007/s10546-006-9080-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rizza, U., M. M. Miglietta, G. A. Degrazia, O. C. Acevedo, and E. P. Marques Filho, 2013: Sunset decay of the convective turbulence with large-eddy simulation under realistic conditions. Physica A, 392, 44814490, https://doi.org/10.1016/j.physa.2013.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, S. M., 1962: Computing wind profile parameters. J. Atmos. Sci., 19, 189190, https://doi.org/10.1175/1520-0469(1962)019<0189:CWPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, M., 2007: Review of urban climate research in (sub)tropical regions. Int. J. Climatol., 27, 18591873, https://doi.org/10.1002/joc.1591.

  • Sáenz, F., and A. M. Durán-Quesada, 2015: A climatology of low level wind regimes over central America using a weather type classification approach. Front. Earth Sci., 3, https://doi.org/10.3389/feart.2015.00015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1997: Decay of convective turbulence revisited. Bound.-Layer Meteor., 82, 503517, https://doi.org/10.1023/A:1000231524314.

  • Sorbjan, Z., 2007: A numerical study of daily transitions in the convective boundary layer. Bound.-Layer Meteor., 123, 365383, https://doi.org/10.1007/s10546-006-9147-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steeneveld, G.-J., 2014: Current challenges in understanding and forecasting stable boundary layers over land and ice. Front. Environ. Sci., 2, https://doi.org/10.3389/fenvs.2014.00041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp., https://doi.org/10.1007/978-94-009-3027-8.

    • Crossref
    • Export Citation
  • Svensson, G., and Coauthors, 2011: Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: The second GABLS experiment. Bound.-Layer Meteor., 140, 177206, https://doi.org/10.1007/s10546-011-9611-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 2003: The cospectral gap and turbulent flux calculations. J. Atmos. Oceanic Technol., 20, 660672, https://doi.org/10.1175/1520-0426(2003)20<660:TCGATF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., J. C. McWilliams, and W. G. Large, 1998: Large-eddy simulation of the diurnal cycle of deep equatorial turbulence. J. Phys. Oceanogr., 28, 129148, https://doi.org/10.1175/1520-0485(1998)028<0129:LESOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and W.-Z. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J. Appl. Meteor., 43, 157169, https://doi.org/10.1175/1520-0450(2004)043<0157:DCOSWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 294 182 0
PDF Downloads 208 131 0

Coastal Wind and Turbulence Observations during the Morning and Evening Transitions over Tropical Terrain

View More View Less
  • 1 Lawrence Livermore National Laboratory, Livermore, California
  • | 2 Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
  • | 3 Department of Civil and Water Engineering, Université Laval, Quebec City, Quebec, Canada
  • | 4 Washakie Renewable Energy, Salt Lake City, Utah
  • | 5 Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
Restricted access

Abstract

Data collected during a multiyear, wind-resource assessment over a multi-land-use coastal environment in Belize are used to study the development and decay of wind and turbulence through the morning and evening transitions. Observations were made on three tall masts, forming an inland transect of approximately 5 km. The wind distribution is found to be bimodal and governed by synoptic scales, with onshore and offshore flow regimes. The behavior between the coastal and inland sites is found to be very similar when the flow is directed offshore; for onshore flow, stark differences occur. The mean wind speed at the coastal site is approximately 20% greater than the most inland site and is nearly constant throughout the diurnal cycle. For both flow regimes, the influence of the land–sea breeze circulation is inconsequential relative to the large-scale synoptic forcing. Composite time series are used to study the evolution of sensible heat flux and turbulence kinetic energy (TKE) throughout the morning and evening transitions. The TKE budget reveals that at the coastal site mechanical production of TKE is much more important than buoyant production. This allows for the unexpected case in which TKE increases through the ET despite the decrease of buoyant TKE production. Multiresolution flux decomposition is used to further study this phenomenon as well as the evolution of the sensible heat flux at differing time scales. An idealized schematic is presented to illustrate the timing and structure of the morning and evening transitions for an inland site and a coastal site that are subjected to similar synoptic forcing.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: D. D. Jensen, jensen54@llnl.gov

Abstract

Data collected during a multiyear, wind-resource assessment over a multi-land-use coastal environment in Belize are used to study the development and decay of wind and turbulence through the morning and evening transitions. Observations were made on three tall masts, forming an inland transect of approximately 5 km. The wind distribution is found to be bimodal and governed by synoptic scales, with onshore and offshore flow regimes. The behavior between the coastal and inland sites is found to be very similar when the flow is directed offshore; for onshore flow, stark differences occur. The mean wind speed at the coastal site is approximately 20% greater than the most inland site and is nearly constant throughout the diurnal cycle. For both flow regimes, the influence of the land–sea breeze circulation is inconsequential relative to the large-scale synoptic forcing. Composite time series are used to study the evolution of sensible heat flux and turbulence kinetic energy (TKE) throughout the morning and evening transitions. The TKE budget reveals that at the coastal site mechanical production of TKE is much more important than buoyant production. This allows for the unexpected case in which TKE increases through the ET despite the decrease of buoyant TKE production. Multiresolution flux decomposition is used to further study this phenomenon as well as the evolution of the sensible heat flux at differing time scales. An idealized schematic is presented to illustrate the timing and structure of the morning and evening transitions for an inland site and a coastal site that are subjected to similar synoptic forcing.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: D. D. Jensen, jensen54@llnl.gov
Save