• Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res., 105, 68376844, doi:10.1029/1999JD901161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abel, S. J., and I. A. Boutle, 2012: An improved representation of the raindrop size distribution for single-moment microphysics schemes. Quart. J. Roy. Meteor. Soc., 138, 21512162, doi:10.1002/qj.1949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., O. B. Toon, and P. V. Hobbs, 1993: Dissipation of marine stratiform clouds and collapse of the marine boundary layer due to the depletion of cloud condensation nuclei by clouds. Science, 262, 226229, doi:10.1126/science.262.5131.226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., O. B. Toon, and P. V. Hobbs, 1994: Reassessing the dependence of cloud condensation nucleus concentration on formation rate. Nature, 367, 445447, doi:10.1038/367445a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., O. B. Toon, and P. V. Hobbs, 1995: A model for particle microphysics, turbulent mixing, and radiative transfer in the stratocumulus-topped marine boundary layer and comparisons with measurements. J. Atmos. Sci., 52, 12041236, doi:10.1175/1520-0469(1995)052<1204:AMFPMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288, 10421047, doi:10.1126/science.288.5468.1042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 10141017, https://doi.org/10.1038/nature03174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., and Coauthors, 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110, https://doi.org/10.1175/2008MWR2582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alfonso, L., 2015: An algorithm for the numerical solution of the multivariate master equation for stochastic coalescence. Atmos. Chem. Phys., 15, 12 31512 326, doi:10.5194/acp-15-12315-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., H. Jonsson, W. Dawson, D. O’Connor, and R. Newton, 2001: The cloud, aerosol and precipitation spectrometer: A new instrument for cloud investigations. Atmos. Res., 59–60, 251264, doi:10.1016/S0169-8095(01)00119-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and H. T. Ochs, 1984: Collection and coalescence efficiencies for accretion. J. Geophys. Res., 89, 71657169, doi:10.1029/JD089iD05p07165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and M. R. Pranger, 1974: Equations for calculating the terminal velocities of water drops. J. Appl. Meteor., 13, 108113, doi:10.1175/1520-0450(1974)013<0108:EFCTTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection. Part I: Double distributions. J. Atmos. Sci., 31, 18141824, doi:10.1175/1520-0469(1974)031<1814:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm, J. P., 1999: Revision and clarification of “A general hydrodynamic theory for mixed-phase microphysics.” Atmos. Res., 52, 167176, doi:10.1016/S0169-8095(99)00033-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm, J. P., 2004: Reply to comment on “Revision and clarification of ‘A general hydrodynamic theory for mixed-phase microphysics’ [Böhm, J. P., 1999, Atmos. Res. 52, 167–176].” Atmos. Res., 69, 289293, doi:10.1016/j.atmosres.2003.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borque, P., E. Luke, and P. Kollias, 2016: On the unified estimation of turbulence eddy dissipation rate using Doppler cloud radars and lidars. J. Geophys. Res. Atmos., 121, 59725989, https://doi.org/10.1002/2015JD024543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bott, A., 2000: A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci., 57, 284294, doi:10.1175/1520-0469(2000)057<0284:AFMFTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuang, P. Y., E. W. Saw, J. D. Small, R. A. Shaw, C. M. Sipperley, G. A. Payne, and W. D. Bachalo, 2008: Airborne phase Doppler interferometry for cloud microphysical measurements. Aerosol Sci. Technol., 42, 685703, doi:10.1080/02786820802232956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., 1974: A study in cloud phase parameterization using the gamma distribution. J. Atmos. Sci., 31, 142155, doi:10.1175/1520-0469(1974)031<0142:ASICPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colella, P., and P. R. Woodward, 1984: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys., 54, 174201, doi:10.1016/0021-9991(84)90143-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., R. Wood, S. E. Yuter, and C. S. Bretherton, 2004: Reflectivity and rain rate in and below drizzling stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 28912918, https://doi.org/10.1256/qj.03.187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., S. M. Kreidenweis, B. Stevens, and W. R. Cotton, 1996: Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision–coalescence. J. Geophys. Res., 101, 21 39121 402, doi:10.1029/96JD01552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, A. W., 1975: An approximation for the shapes of large raindrops. J. Appl. Meteor., 14, 15781583, doi:10.1175/1520-0450(1975)014<1578:AAFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W. D., 1980: A detailed microphysical model within a two-dimensional dynamical framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507, doi:10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, L., J. Michalsky, and J. Berndt, 1994: Automated multifilter rotating shadow-band radiometer: An instrument for optical depth and radiation measurements. Appl. Opt., 33, 51185125, doi:10.1364/AO.33.005118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, W. C., H. Jonsson, L.-P. Wang, G. Buzorius, R. C. Flagan, J. H. Seinfeld, and A. Nenes, 2009: On the representation of droplet coalescence and autoconversion: Evaluation using ambient cloud droplet size distributions. J. Geophys. Res., 114, D07201, https://doi.org/10.1029/2008JD010502.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2011: Numerical solution to drop coalescence/breakup with a volume-conserving, positive-definite, and unconditionally stable scheme. J. Atmos. Sci., 68, 334346, doi:10.1175/2010JAS3605.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., R. P. Turco, E. J. Jensen, and O. B. Toon, 1994: Modeling coagulation among particles of different composition and size. Atmos. Environ., 28, 13271338, doi:10.1016/1352-2310(94)90280-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 1998: Ice nucleation processes in upper tropospheric wave-clouds observed during SUCCESS. Geophys. Res. Lett., 25, 13631366, doi:10.1029/98GL00299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, doi:10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, M. P., A. S. Ackerman, D. E. Stevens, and N. N. Mansour, 2006: On the application of the dynamic Smagorinsky model to large-eddy simulations of the cloud-topped atmospheric boundary layer. J. Atmos. Sci., 63, 526546, doi:10.1175/JAS3651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 11601189, doi:10.1175/1520-0469(1991)048<1160:TSOACC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., D. B. Mechem, and K. Choi, 2012: Effects of sea-salt aerosols on precipitation in simulations of shallow cumulus. J. Atmos. Sci., 69, 463483, doi:10.1175/JAS-D-11-031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., B. A. Albrecht, R. Lhermitte, and A. Savtchenk, 2001: Radar observations of updrafts, downdrafts, and turbulence in fair-weather cumuli. J. Atmos. Sci., 58, 17501766, doi:10.1175/1520-0469(2001)058<1750:ROOUDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., W. Szyrmer, J. Rémillard, and E. Luke, 2011: Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution. J. Geophys. Res., 116, D13203, doi:10.1029/2010JD015238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., and G. Feingold, 2011: Aerosol–cloud–precipitation system as a predator-prey problem. Proc. Natl. Acad. Sci. USA, 108, 12 22712 232, doi:10.1073/pnas.1101777108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, V. E., K. E. Kotenberg, and N. B. Wood, 2007: An analytic longwave radiation formula for liquid layer clouds. Mon. Wea. Rev., 135, 689699, doi:10.1175/MWR3315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q.-F., Y. L. Kogan, D. K. Lilly, and M. P. Khairoutdinov, 1997: Variational optimization method for calculation of cloud drop growth in an Eulerian drop-size framework. J. Atmos. Sci., 54, 24932504, doi:10.1175/1520-0469(1997)054<2493:VOMFCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lkhamjav, J., H. Lee, Y.-L. Jeon, and J.-J. Baik, 2017: Examination of an improved quasi-stochastic model for the collisional growth of drops. J. Geophys. Res. Atmos., 122, 17131724, https://doi.org/10.1002/2016JD025904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C. N., and J. J. DeLuisi, 1998: Development of an automated hemispheric sky imager for cloud fraction retrievals. Proc. 10th Symp. on Meteorological Observations and Instrumentation, Phoenix, AZ, Amer. Meteor. Soc., 171–174.

  • Mead, J. B., and K. B. Widener, 2005: W-band ARM cloud radar. 32nd Int. Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P1R.3, http://ams.confex.com/ams/pdfpapers/95978.pdf.

  • Mechem, D. B., P. C. Robinson, and Y. L. Kogan, 2006: Processing of cloud condensation nuclei by collision-coalescence in a mesoscale model. J. Geophys. Res., 111, D18204, doi:10.1029/2006JD007183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., S. E. Yuter, and S. P. de Szoeke, 2012: Thermodynamic and aerosol controls in southeast Pacific stratocumulus. J. Atmos. Sci., 69, 12501266, doi:10.1175/JAS-D-11-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., S. E. Giangrande, C. S. Wittman, P. Borque, T. Toto, and P. Kollias, 2015: Insights from modeling and observational evaluation of a precipitating continental cumulus event observed during the MC3E field campaign. J. Geophys. Res. Atmos., 120, 19801995, https://doi.org/10.1002/2014JD022255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, https://doi.org/10.1109/TGRS.2011.2144601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen, 2007: Retrieval of mixing height and dust concentration with lidar ceilometer. Bound.-Layer Meteor., 124, 117128, doi:10.1007/s10546-006-9103-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., A. P. Barros, and C. R. Williams, 2008: An intercomparison of model simulations and VPR estimates of the vertical structure of warm stratiform rainfall during TWP-ICE. J. Appl. Meteor. Climatol., 47, 27972815, doi:10.1175/2008JAMC1801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., A. P. Barros, and F. Y. Testik, 2012: On the influence of raindrop collision outcomes on equilibrium drop size distributions. J. Atmos. Sci., 69, 15341546, doi:10.1175/JAS-D-11-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rémillard, J., and G. Tselioudis, 2015: Cloud regime variability over the Azores and its application to climate model evaluation. J. Climate, 28, 97079720, doi:10.1175/JCLI-D-15-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savic-Jovcic, V., and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65, 15871605, doi:10.1175/2007JAS2456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and W. W. Grabowski, 1990: The multidimensional positive definite advection transport algorithm: Nonoscillatory option. J. Comput. Phys., 86, 355375, doi:10.1016/0021-9991(90)90105-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, G. Feingold, and C.-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55, 36163638, doi:10.1175/1520-0469(1998)055<3616:LESOSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and chemistry of marine stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579593, doi:10.1175/BAMS-84-5-579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., A. S. Ackerman, and C. S. Bretherton, 2002: Effects of domain size and numerical resolution on the simulation of shallow cumulus convection. J. Atmos. Sci., 59, 32853301, doi:10.1175/1520-0469(2002)059<3285:EODSAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., F. Albers, A. Reuter, A. V. Korolev, U. Maixner, E. Rashke, and Z. Vukovic, 2001: Laboratory measurements of the response of a PMS OAP-2DC. J. Atmos. Oceanic Technol., 18, 11501170, doi:10.1175/1520-0426(2001)018<1150:LMOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, K., G. L. Stephens, S. C. van den Heever, and T. Y. Nakajima, 2011: Diagnosis of the warm rain process in cloud-resolving models using joint CloudSat and MODIS observations. J. Atmos. Sci., 68, 26552670, doi:10.1175/JAS-D-10-05026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, K., J.-C. Golaz, and G. L. Stephens, 2013: Evaluating cloud tuning in a climate model with satellite observations. Geophys. Res. Lett., 40, 44644468, doi:10.1002/grl.50874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., W. Rossow, Y.-C. Zhang, and D. Konsta, 2013: Global weather states and their properties from passive and active satellite cloud retrievals. J. Climate, 26, 77347746, doi:10.1175/JCLI-D-13-00024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. E. Cady-Pereira, and K. L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from the Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690, doi:10.1109/TGRS.2007.903703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanZanten, M. C., B. Stevens, and G. Vali, 2005: Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci., 62, 88106, doi:10.1175/JAS-3355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanZanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, M06001, https://doi.org/10.1029/2011MS000056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and G. Feingold, 2009: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci., 66, 32373256, doi:10.1175/2009JAS3022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62, 30113033, doi:10.1175/JAS3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2006: Rate of loss of cloud droplets by coalescence in warm clouds. J. Geophys. Res., 111, D21205, doi:10.1029/2006JD007553.

  • Wood, R., and Coauthors, 2011: The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654, https://doi.org/10.5194/acp-11-627-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2015: Clouds, aerosols, and precipitation in the marine boundary layer: An ARM mobile facility deployment. Bull. Amer. Meteor. Soc., 96, 419440, doi:10.1175/BAMS-D-13-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., J. D. Stemmler, J. Rémillard, and A. Jefferson, 2017: Low-CCN concentration air masses over the eastern North Atlantic: Seasonality, meteorology, and drivers. J. Geophys. Res. Atmos., 122, 12031223, https://doi.org/10.1002/2016JD025557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X., and Coauthors, 2011: Observations of the boundary layer, cloud, and aerosol variability in the southeast Pacific near-coastal marine stratocumulus during VOCALS-REx. Atmos. Chem. Phys., 11, 99439959, doi:10.5194/acp-11-9943-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 282 160 0
PDF Downloads 220 119 0

Use of Cloud Radar Doppler Spectra to Evaluate Stratocumulus Drizzle Size Distributions in Large-Eddy Simulations with Size-Resolved Microphysics

View More View Less
  • 1 Stony Brook University, State University of New York, Stony Brook, New York
  • | 2 NASA Goddard Institute for Space Studies, New York, New York
  • | 3 Brookhaven National Laboratory, Brookhaven, New York
  • | 4 University of Kansas, Lawrence, Kansas
  • | 5 University of Washington, Seattle, Washington
  • | 6 University of California, Santa Cruz, Santa Cruz, California
  • | 7 Science Systems and Applications, Inc., and NASA Langley Research Center, Langley, Virginia
Restricted access

Abstract

A case study of persistent stratocumulus over the Azores is simulated using two independent large-eddy simulation (LES) models with bin microphysics, and forward-simulated cloud radar Doppler moments and spectra are compared with observations. Neither model is able to reproduce the monotonic increase of downward mean Doppler velocity with increasing reflectivity that is observed under a variety of conditions, but for differing reasons. To a varying degree, both models also exhibit a tendency to produce too many of the largest droplets, leading to excessive skewness in Doppler velocity distributions, especially below cloud base. Excessive skewness appears to be associated with an insufficiently sharp reduction in droplet number concentration at diameters larger than ~200 μm, where a pronounced shoulder is found for in situ observations and a sharp reduction in reflectivity size distribution is associated with relatively narrow observed Doppler spectra. Effectively using LES with bin microphysics to study drizzle formation and evolution in cloud Doppler radar data evidently requires reducing numerical diffusivity in the treatment of the stochastic collection equation; if that is accomplished sufficiently to reproduce typical spectra, progress toward understanding drizzle processes is likely.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. M. Fridlind, ann.fridlind@nasa.gov

Abstract

A case study of persistent stratocumulus over the Azores is simulated using two independent large-eddy simulation (LES) models with bin microphysics, and forward-simulated cloud radar Doppler moments and spectra are compared with observations. Neither model is able to reproduce the monotonic increase of downward mean Doppler velocity with increasing reflectivity that is observed under a variety of conditions, but for differing reasons. To a varying degree, both models also exhibit a tendency to produce too many of the largest droplets, leading to excessive skewness in Doppler velocity distributions, especially below cloud base. Excessive skewness appears to be associated with an insufficiently sharp reduction in droplet number concentration at diameters larger than ~200 μm, where a pronounced shoulder is found for in situ observations and a sharp reduction in reflectivity size distribution is associated with relatively narrow observed Doppler spectra. Effectively using LES with bin microphysics to study drizzle formation and evolution in cloud Doppler radar data evidently requires reducing numerical diffusivity in the treatment of the stochastic collection equation; if that is accomplished sufficiently to reproduce typical spectra, progress toward understanding drizzle processes is likely.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. M. Fridlind, ann.fridlind@nasa.gov
Save