• Albini, F. A., and R. G. Baughman, 1979: Estimating windspeeds for predicting wildland fire behavior. USDA Forest Service Research Paper INT-221, 24 pp., https://ia801001.us.archive.org/22/items/estimatingwindsp221albi/estimatingwindsp221albi.pdf.

  • Alexander, M. E., 1982: Calculating and interpreting forest fire intensities. Can. J. Bot., 60, 349357, doi:10.1139/b82-048.

  • Amiro, B. D., 1990: Comparison of turbulence statistics within three boreal forest canopies. Bound.-Layer Meteor., 51, 99121, doi:10.1007/BF00120463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., and T. P. Meyers, 1989: The effects of extreme turbulent events on the estimation of aerodynamic variables in a deciduous forest canopy. Agric. For. Meteor., 48, 117134, doi:10.1016/0168-1923(89)90011-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., and K. B. Wilson, 2001: Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecol. Modell., 142, 155184, doi:10.1016/S0304-3800(01)00287-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brioude, J., and Coauthors, 2013: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1. Geosci. Model Dev., 6, 18891904, doi:10.5194/gmd-6-1889-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byram, G. M., 1959: Combustion of forest fuels. Forest Fire: Control and Use, 1st ed. K. P. Davis, Ed., McGraw-Hill, 61–89.

  • Charland, A. M., and C. B. Clements, 2013: Kinematic structure of a wildland fire plume observed by Doppler lidar. J. Geophys. Res. Atmos., 118, 32003212, doi:10.1002/jgrd.50308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clements, C. B., and Coauthors, 2007: Observing the dynamics of wildland grass fires: FireFlux—A field validation experiment. Bull. Amer. Meteor. Soc., 88, 13691382, doi:10.1175/BAMS-88-9-1369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clements, C. B., S. Zhong, X. Bian, W. E. Heilman, and D. W. Byun, 2008: First observations of turbulence generated by grass fires. J. Geophys. Res., 113, D22102, doi:10.1029/2008JD010014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clements, C. B., and Coauthors, 2016: Fire weather conditions and fire–atmosphere interactions observed during low-intensity prescribed fires—RxCADRE 2012. Int. J. Wildland Fire, 25, 90101, doi:10.1071/WF14173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dupont, S., and Y. Brunet, 2008: Influence of foliar density profile on canopy flow: A large-eddy simulation study. Agric. For. Meteor., 148, 976990, doi:10.1016/j.agrformet.2008.01.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erisman, J. W., and G. Draaijers, 2003: Deposition to forests in Europe: Most important factors influencing dry deposition and models used for generalization. Environ. Pollut., 124, 379388, doi:10.1016/S0269-7491(03)00049-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnigan, J., 2000: Turbulence in plant canopies. Annu. Rev. Fluid Mech., 32, 519571, doi:10.1146/annurev.fluid.32.1.519.

  • Flesch, T. K., and J. D. Wilson, 1992: A two-dimensional trajectory-simulation model for non-Gaussian, inhomogeneous turbulence within plant canopies. Bound.-Layer Meteor., 61, 349374, doi:10.1007/BF00119097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heilman, W. E., and Coauthors, 2013: Development of modeling tools for predicting smoke dispersion from low-intensity fires. U.S. Joint Fire Science Program Final Rep. 09-1-04-1, 64 pp., https://www.firescience.gov/projects/09-1-04-1/project/09-1-04-1_final_report.pdf.

  • Heilman, W. E., C. B. Clements, D. Seto, X. Bian, K. L. Clark, N. S. Skowronski, and J. L. Hom, 2015: Observations of fire-induced turbulence regimes during low-intensity wildland fires in forested environments: Implications for smoke dispersion. Atmos. Sci. Lett., 16, 453460, doi:10.1002/asl.581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiefer, M. T., S. Zhong, W. E. Heilman, J. J. Charney, and X. Bian, 2013: Evaluation of an ARPS-based canopy flow modeling system for use in future operational smoke prediction efforts. J. Geophys. Res. Atmos., 118, 61756188, doi:10.1002/jgrd.50491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiefer, M. T., and Coauthors, 2014: Multiscale simulation of a prescribed fire event in the New Jersey Pine Barrens using ARPS-CANOPY. J. Appl. Meteor. Climatol., 53, 793812, doi:10.1175/JAMC-D-13-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and Coauthors, 2009: The BlueSky smoke modeling framework. Int. J. Wildland Fire, 18, 906920, doi:10.1071/WF07086.

  • Lavdas, L. G., 1996: Program VSMOKE—User’s manual. USDA Forest Service Southeastern Forest Experiment Station Tech. Rep. SRS-6, 156 pp., https://doi.org/10.2737/SRS-GTR-006.

    • Crossref
    • Export Citation
  • Leclerc, M. Y., K. C. Beissner, R. H. Shaw, G. den Hartog, and H. H. Neumann, 1991: The influence of buoyancy on third-order turbulent velocity statistics within a deciduous forest. Bound.-Layer Meteor., 55, 109123, doi:10.1007/BF00119329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1990: Some observations of vertical velocity skewness in the convective planetary boundary layer. J. Atmos. Sci., 47, 11631169, doi:10.1175/1520-0469(1990)047<1163:SOOVVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and P. L. Stephens, 1980: The role of thermals in the convective boundary layer. Bound.-Layer Meteor., 19, 509532, doi:10.1007/BF00122351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nathan, R., G. G. Katul, B. Bohrer, A. Kuparinen, M. B. Soons, S. E. Thompson, A. Trakhtenbrot, and H. S. Horn, 2011: Mechanistic models of seed dispersal by wind. Theor. Ecol., 4, 113132, doi:10.1007/s12080-011-0115-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ottmar, R. D., and Coauthors, 2016: Measurements, datasets and preliminary results from the RxCADRE project—2008, 2011 and 2012. Int. J. Wildland Fire, 25, 19, doi:10.1071/WF14161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., and A. S. Thom, 1981: Turbulence in and above plant canopies. Annu. Rev. Fluid Mech., 13, 97129, doi:10.1146/annurev.fl.13.010181.000525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riebau, A. R., D. G. Fox, M. L. Sestak, B. Dailey, and S. F. Archer, 1988: Simple Approach Smoke Estimation Model. Atmos. Environ., 22, 783788, doi:10.1016/0004-6981(88)90017-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, K. C., 2002: Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fenn., 36, 1339, doi:10.14214/sf.548.

  • Scire, J. G., D. G. Strimaitis, and R. J. Yamartino, 2000: A user’s guide for the CALPUFF dispersion model (version 5). Earth Tech, Inc., Tech. Doc., 521 pp., http://www.src.com/calpuff/download/CALPUFF_UsersGuide.pdf.

  • Seto, D., and C. B. Clements, 2011: Fire whirl evolution observed during a valley wind-sea breeze reversal. J. Combust., 2011, 569475, doi:10.1155/2011/569475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, D., C. B. Clements, and W. E. Heilman, 2013: Turbulence spectra measured during fire front passage. Agric. For. Meteor., 169, 195210, doi:10.1016/j.agrformet.2012.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, D., T. M. Strand, C. B. Clements, H. Thistle, and R. Mickler, 2014: Wind and plume thermodynamic structures during low-intensity subcanopy fires. Agric. For. Meteor., 198-199, 5361, doi:10.1016/j.agrformet.2014.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skowronski, N., K. Clark, R. Nelson, J. Hom, and M. Patterson, 2007: Remotely sensed measurements of forest structure and fuel loads in the pinelands of New Jersey. Remote Sens. Environ., 108, 123129, doi:10.1016/j.rse.2006.09.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skowronski, N., K. Clark, M. Duveneck, and J. Hom, 2011: Three-dimensional canopy fuel loading predicted using upward and downward sensing lidar systems. Remote Sens. Environ., 115, 703714, doi:10.1016/j.rse.2010.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. W., and T. D. James, 1978: Characteristics of prescribed bums and resultant short-term environmental changes in Populus tremuloides woodland in southern Ontario. Can. J. Bot., 56, 17821791, doi:10.1139/b78-213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 24612474, doi:10.5194/acp-5-2461-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strand, T. M., and Coauthors, 2013: Sub-canopy transport and dispersion of smoke: A unique observation dataset and model evaluation. U.S. Joint Fire Science Program Final Rep. 09-1-04-2, 63 pp., https://www.firescience.gov/projects/09-1-04-2/project/09-1-04-2_final_report.pdf.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Su, H.-B., H. P. Schmid, C. S. Vogel, and P. S. Curtis, 2008: Effects of canopy morphology and thermal stability on mean flow and turbulence statistics observed inside a mixed hardwood forest. Agric. For. Meteor., 148, 862882, doi:10.1016/j.agrformet.2007.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X. M., Z. L. Zhu, X. F. Wen, G. F. Yuan, and G. R. Yu, 2006: The impact of averaging period on eddy fluxes observed at ChinaFLUX sites. Agric. For. Meteor., 137, 188193, doi:10.1016/j.agrformet.2006.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, S. W., B. M. Wotton, M. E. Alexander, and G. N. Dalrymple, 2004: Variation in wind and crown fire behaviour in a northern jack pine–black spruce forest. Can. J. For. Res., 34, 15611576, doi:10.1139/x04-116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., and C. K. Thomas, 2013: Some aspects of the turbulence kinetic energy and fluxes above and beneath a tall open pine forest canopy. Agric. For. Meteor., 181, 143151, doi:10.1016/j.agrformet.2013.07.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150, doi:10.1023/A:1018966204465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, N. R., and R. H. Shaw, 1977: A higher order closure model for canopy flow. J. Appl. Meteor., 16, 11971205, doi:10.1175/1520-0450(1977)016<1197:AHOCMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 1988: Structure of the PBL. Lectures on Air Pollution Modeling, A. Venkatram and J. C. Wyngaard, Eds., Amer. Meteor. Soc., 9–61.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 170 76 0
PDF Downloads 101 39 0

Atmospheric Turbulence Observations in the Vicinity of Surface Fires in Forested Environments

View More View Less
  • 1 Northern Research Station, USDA Forest Service, Lansing, Michigan
  • | 2 Northern Research Station, USDA Forest Service, New Lisbon, New Jersey
  • | 3 Northern Research Station, USDA Forest Service, Morgantown, West Virginia
  • | 4 Northern Research Station, USDA Forest Service, Newtown Square, Pennsylvania
  • | 5 Northern Research Station, USDA Forest Service, New Lisbon, New Jersey
Restricted access

Abstract

Ambient and fire-induced atmospheric turbulence in the vicinity of wildland fires can affect the behavior of those fires and the dispersion of smoke. The presence of forest overstory vegetation can further complicate the evolution of local turbulence regimes and their interaction with spreading fires and smoke plumes. Previous observational studies of wildland fire events in forested environments have shown that turbulence energy and anisotropy in the vicinity of spreading line fires exhibit temporal and spatial variability influenced by the presence of overstory vegetation. This study builds on those previous observational studies to further examine turbulence regimes during two wildland fires in forested environments, with an emphasis on the effects of forest canopies on turbulence energy budgets, the skewness in turbulent velocity distributions, and stability–anisotropy variations before, during, and after fire-front-passage periods. Analyses indicate that turbulence anisotropy tends to persist throughout the vertical extent of overstory vegetation layers even during highly buoyant fire-front-passage periods, with horizontal velocity perturbations dominating over vertical velocity perturbations. The analyses also suggest that the periods before and after fire-front passage in forested environments can be very different with respect to how diffusion and shear production concurrently affect the evolution of turbulence energy within the canopy layer. In addition, horizontal and vertical velocity distribution analyses carried out in this study suggest that spreading line fires can have a substantial effect on the skewness of daytime velocity distributions typically observed inside forest vegetation layers.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Warren E. Heilman, wheilman@fs.fed.us

Abstract

Ambient and fire-induced atmospheric turbulence in the vicinity of wildland fires can affect the behavior of those fires and the dispersion of smoke. The presence of forest overstory vegetation can further complicate the evolution of local turbulence regimes and their interaction with spreading fires and smoke plumes. Previous observational studies of wildland fire events in forested environments have shown that turbulence energy and anisotropy in the vicinity of spreading line fires exhibit temporal and spatial variability influenced by the presence of overstory vegetation. This study builds on those previous observational studies to further examine turbulence regimes during two wildland fires in forested environments, with an emphasis on the effects of forest canopies on turbulence energy budgets, the skewness in turbulent velocity distributions, and stability–anisotropy variations before, during, and after fire-front-passage periods. Analyses indicate that turbulence anisotropy tends to persist throughout the vertical extent of overstory vegetation layers even during highly buoyant fire-front-passage periods, with horizontal velocity perturbations dominating over vertical velocity perturbations. The analyses also suggest that the periods before and after fire-front passage in forested environments can be very different with respect to how diffusion and shear production concurrently affect the evolution of turbulence energy within the canopy layer. In addition, horizontal and vertical velocity distribution analyses carried out in this study suggest that spreading line fires can have a substantial effect on the skewness of daytime velocity distributions typically observed inside forest vegetation layers.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Warren E. Heilman, wheilman@fs.fed.us
Save