• Auer, A. H., D. L. Veal, and J. D. Marwitz, 1969: Observations of ice crystal and ice nuclei concentrations in stable cap clouds. J. Atmos. Sci., 26, 13421343, doi:10.1175/1520-0469(1969)026<1342:OOICAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacon, N. J., M. B. Baker, and B. D. Swanson, 2003: Initial stages in the morphological evolution of vapour-grown ice crystals: A laboratory investigation. Quart. J. Roy. Meteor. Soc., 129, 19031927, doi:10.1256/qj.02.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, doi:10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, B., and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45, 12821290, doi:10.1175/JAM2398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., H. Jonsson, W. Dawson, D. O’Connor, and R. Newton, 2001: The cloud, aerosol and precipitation spectrometer: A new instrument for cloud investigations. Atmos. Res., 59–60, 251264, doi:10.1016/S0169-8095(01)00119-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., and G. Vali, 1981: The origin of ice in mountain cap clouds. J. Atmos. Sci., 38, 12441259, doi:10.1175/1520-0469(1981)038<1244:TOOIIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. L. Schramm, W. B. Rossow, and D. Randall, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9, 17311764, doi:10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domine, F., and Coauthors, 2011: The specific surface area and chemical composition of diamond dust near Barrow, Alaska. J. Geophys. Res., 116, D00R06, doi:10.1029/2011JD016162.

    • Search Google Scholar
    • Export Citation
  • Ehrlich, A., M. Wendisch, E. Bierwirth, A. Herber, and A. Schwarzenböck, 2008: Ice crystal shape effects on solar radiative properties of Arctic mixed-phase clouds—Dependence on microphysical properties. Atmos. Res., 88, 266276, doi:10.1016/j.atmosres.2007.11.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fugal, J. P., T. J. Schultz, and R. A. Shaw, 2009: Practical methods for automated reconstruction and characterization of particles in digital in-line holograms. Meas. Sci. Technol.. 20, 075501, doi:10.1088/0957-0233/20/7/075501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., 1991: Direct measurement of suspended particulate volume concentration and far-infrared extinction coefficient with a laser-diffraction instrument. Appl. Opt., 30, 48244831, doi:10.1364/AO.30.004824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gotaas, Y., and C. S. Benson, 1965: The effect of suspended ice crystals on radiative cooling. J. Appl. Meteor., 4, 446453, doi:10.1175/1520-0450(1965)004<0446:TEOSIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2014: Ice fog in Arctic during FRAM–Ice Fog project: Aviation and nowcasting applications. Bull. Amer. Meteor. Soc., 95, 211226, doi:10.1175/BAMS-D-11-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2015: A review on ice fog measurements and modeling. Atmos. Res., 151, 219, doi:10.1016/j.atmosres.2014.04.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henneberger, J. F.-W., 2013: Mountain-top in-situ observations of mixed-phase clouds with a digital holographic instrument. Ph.D. dissertation, ETH Zurich, 125 pp., doi:10.3929/ethz-a-010088759.

    • Crossref
    • Export Citation
  • Hobbs, P. V., S. Chang, and J. D. Locatelli, 1974: The dimensions and aggregation of ice crystals in natural clouds. J. Geophys. Res., 79, 21992206, doi:10.1029/JC079i015p02199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, A. W., 1975: Summer ice crystal precipitation at the South Pole. J. Appl. Meteor., 14, 246249, doi:10.1175/1520-0450(1975)014<0246:SICPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., and M. D. Shupe, 2004: Characteristics and radiative effects of diamond dust over the western Arctic Ocean region. J. Climate, 17, 29532960, doi:10.1175/1520-0442(2004)017<2953:CAREOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375, doi:10.1175/JAS4035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., G. A. Isaac, and J. Hallett, 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26, 12991302, doi:10.1029/1999GL900232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., E. F. Emery, J. W. Strapp, S. G. Cober, and G. A. Isaac, 2013: Quantification of the effects of shattering on airborne ice particle measurements. J. Atmos. Oceanic Technol., 30, 25272553, doi:10.1175/JTECH-D-13-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lance, S., C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the cloud droplet probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, doi:10.5194/amt-3-1683-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and B. A. Baker, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part II: Applications to collected data. J. Appl. Meteor. Climatol., 45, 12911303, doi:10.1175/JAM2399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, P. Zmarzly, D. O’Connor, Q. Mo, J.-F. Gayet, and V. Shcherbakov, 2006a: Microphysical and optical properties of atmospheric ice crystals at South Pole Station. J. Appl. Meteor. Climatol., 45, 15051524, doi:10.1175/JAM2421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, and H. Jonsson, 2006b: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, doi:10.1175/JTECH1927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, G., and Coauthors, 2015: The origins of ice crystals measured in mixed-phase clouds at the high-Alpine site Jungfraujoch. Atmos. Chem. Phys., 15, 12 95312 969, doi:10.5194/acp-15-12953-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohtake, T., 1978: Atmospheric ice crystals at the South Pole in summer. Antarct. J. U.S., 13, 174175.

  • Ohtake, T., and T. Yogi, 1979: Winter ice crystals at South Pole. Antarct. J. U.S., 14, 201203.

  • Ohtake, T., K. Jayaweera, and K.-I. Sakurai, 1982: Observation of ice crystal formation in lower Arctic atmosphere. J. Atmos. Sci., 39, 28982904, doi:10.1175/1520-0469(1982)039<2898:OOICFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., 1981: Microphysical processes in two stably stratified orographic cloud systems. M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 151 pp.

  • Raupach, S. M. F., H. J. Vössing, J. Curtius, and S. Borrmann, 2006: Digital crossed-beam holography for in situ imaging of atmospheric ice particles. J. Opt., 8A, 796806, doi:10.1088/1464-4258/8/9/014.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., and G. Vali, 1987: Ice crystal production by mountain surfaces. J. Climate Appl. Meteor., 26, 11521168, doi:10.1175/1520-0450(1987)026<1152:ICPBMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenk, L. P., and Coauthors, 2014: Characterization and first results of an ice nucleating particle measurement system based on counterflow virtual impactor technique. Atmos. Meas. Tech. Discuss., 7, 10 58510 617, doi:10.5194/amtd-7-10585-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, S., and Coauthors, 2015: In-situ single submicron particle composition analysis of ice residuals from mountain-top mixed-phase clouds in central Europe. Atmos. Chem. Phys. Discuss., 15, 46774724, doi:10.5194/acpd-15-4677-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 2012: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, 1232 pp.

  • Ulanowski, Z., P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, 2014: Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements. Atmos. Chem. Phys., 14, 16491662, doi:10.5194/acp-14-1649-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., D. Leon, and J. R. Snider, 2012: Ground-layer snow clouds. Quart. J. Roy. Meteor. Soc., 138, 15071525, doi:10.1002/qj.1882.

  • Vochezer, P., E. Järvinen, R. Wagner, P. Kupiszewski, T. Leisner, and M. Schnaiter, 2015: In situ characterization of mixed phase clouds using the Small Ice Detector and the Particle Phase Discriminator. Atmos. Meas. Tech., 9, 159177, doi:10.5194/amt-9-159-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walden, V. P., S. G. Warren, and E. Tuttle, 2003: Atmospheric ice crystals over the Antarctic Plateau in winter. J. Appl. Meteor., 42, 13911405, doi:10.1175/1520-0450(2003)042<1391:AICOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., P. Yang, and P. Pilewskie, 2007: Effects of ice crystal habit on thermal infrared radiative properties and forcing of cirrus. J. Geophys. Res., 112, D08201, doi:10.1029/2006JD007899.

    • Search Google Scholar
    • Export Citation
  • Worringen, A., and Coauthors, 2015: Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques. Atmos. Chem. Phys., 15, 41614178, doi:10.5194/acp-15-4161-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 425 174 4
PDF Downloads 202 86 4

Microphysical Properties of Ice Crystal Precipitation and Surface-Generated Ice Crystals in a High Alpine Environment in Switzerland

Oliver SchlenczekParticle Chemistry Department, Max Planck Institute for Chemistry, and Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany

Search for other papers by Oliver Schlenczek in
Current site
Google Scholar
PubMed
Close
,
Jacob P. FugalParticle Chemistry Department, Max Planck Institute for Chemistry, and Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany

Search for other papers by Jacob P. Fugal in
Current site
Google Scholar
PubMed
Close
,
Gary LloydCentre for Atmospheric Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by Gary Lloyd in
Current site
Google Scholar
PubMed
Close
,
Keith N. BowerCentre for Atmospheric Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by Keith N. Bower in
Current site
Google Scholar
PubMed
Close
,
Thomas W. ChoulartonCentre for Atmospheric Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by Thomas W. Choularton in
Current site
Google Scholar
PubMed
Close
,
Michael FlynnCentre for Atmospheric Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by Michael Flynn in
Current site
Google Scholar
PubMed
Close
,
Jonathan CrosierNational Centre for Atmospheric Science, and United Kingdom Centre for Atmospheric Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by Jonathan Crosier in
Current site
Google Scholar
PubMed
Close
, and
Stephan BorrmannParticle Chemistry Department, Max Planck Institute for Chemistry, and Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany

Search for other papers by Stephan Borrmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the Cloud and Aerosol Characterization Experiment (CLACE) 2013 field campaign at the High Altitude Research Station Jungfraujoch, Switzerland, optically thin pure ice clouds and ice crystal precipitation were measured using holographic and other in situ particle instruments. For cloud particles, particle images, positions in space, concentrations, and size distributions were obtained, allowing one to extract size distributions classified by ice crystal habit. Small ice crystals occurring under conditions with a vertically thin cloud layer above and a stratocumulus layer approximately 1 km below exhibit similar properties in size and crystal habits as Antarctic/Arctic diamond dust. Also, ice crystal precipitation stemming from midlevel clouds subsequent to the diamond dust event was observed with a larger fraction of ice crystal aggregates when compared with the diamond dust. In another event, particle size distributions could be derived from mostly irregular ice crystals and aggregates, which likely originated from surface processes. These particles show a high spatial and temporal variability, and it is noted that size and habit distributions have only a weak dependence on the particle number concentration. Larger ice crystal aggregates and rosette shapes of some hundred microns in maximum dimension could be sampled as a precipitating cirrostratus cloud passed the site. The individual size distributions for each habit agree well with lognormal distributions. Fitted parameters to the size distributions are presented along with the area-derived ice water content, and the size distributions are compared with other measurements of pure ice clouds made in the Arctic and Antarctic.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Oliver Schlenczek, oliver.schlenczek@mpic.de

Abstract

During the Cloud and Aerosol Characterization Experiment (CLACE) 2013 field campaign at the High Altitude Research Station Jungfraujoch, Switzerland, optically thin pure ice clouds and ice crystal precipitation were measured using holographic and other in situ particle instruments. For cloud particles, particle images, positions in space, concentrations, and size distributions were obtained, allowing one to extract size distributions classified by ice crystal habit. Small ice crystals occurring under conditions with a vertically thin cloud layer above and a stratocumulus layer approximately 1 km below exhibit similar properties in size and crystal habits as Antarctic/Arctic diamond dust. Also, ice crystal precipitation stemming from midlevel clouds subsequent to the diamond dust event was observed with a larger fraction of ice crystal aggregates when compared with the diamond dust. In another event, particle size distributions could be derived from mostly irregular ice crystals and aggregates, which likely originated from surface processes. These particles show a high spatial and temporal variability, and it is noted that size and habit distributions have only a weak dependence on the particle number concentration. Larger ice crystal aggregates and rosette shapes of some hundred microns in maximum dimension could be sampled as a precipitating cirrostratus cloud passed the site. The individual size distributions for each habit agree well with lognormal distributions. Fitted parameters to the size distributions are presented along with the area-derived ice water content, and the size distributions are compared with other measurements of pure ice clouds made in the Arctic and Antarctic.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Oliver Schlenczek, oliver.schlenczek@mpic.de
Save