• Ahmad, N. N., and F. H. Proctor, 2012: Estimation of eddy dissipation rates from mesoscale model simulations. Preprints, 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, American Institute of Aeronautics and Astronautics, AIAA 2012-0429, 24 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120000925.pdf.]

    • Crossref
    • Export Citation
  • Aircraft Accident Investigation Commission, 2014: Final report on the accident investigation of 9N-ABB Twin Otter (DHC6/300) aircraft. Government of Nepal Ministry of Culture, Tourism and Civil Aviation Tech. Rep., 37 pp.

  • Bains, P. G., 1995: Topographic Effects in Stratified Flows. Cambridge University Press, 482 pp.

  • Bookhagen, B., and D. Burbank, 2006: Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett., 33, L08405, doi:10.1029/2006GL026037.

    • Search Google Scholar
    • Export Citation
  • Borovikov, A. M., 1963: Cloud Physics. Israel Program for Scientific Translations, 392 pp.

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., and W. R. Peltier, 1977: On the evolution and stability of finite-amplitude mountain waves. J. Atmos. Sci., 34, 17151730, doi:10.1175/1520-0469(1977)034<1715:OTEASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, and J. Strapp, 2001: Characterization of aircraft icing environments that include supercooled large drops. J. Atmos. Sci., 40, 19842002, doi:10.1175/1520-0450(2001)040<1984:COAIET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collier, E., and W. W. Immerzeel, 2015: High-resolution modeling of atmospheric dynamics in the Nepalese Himalaya. J. Geophys. Res. Atmos., 120, 98829896, doi:10.1002/2015JD023266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J., and Q. Jiang, 2006: Observations and numerical simulations of mountain waves in the presence of directional wind shear. Quart. J. Roy. Meteor. Soc., 132, 18771905, doi:10.1256/qj.05.140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeir, K. K., and R. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 11801210, doi:10.1175/1520-0469(1987)044<1180:NSOTOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 59–81.

    • Crossref
    • Export Citation
  • Ellrod, G. P., and A. A. Bailey, 2007: Assessment of aircraft icing potential and maximum icing altitude from geostationary meteorological satellite data. Wea. Forecasting, 22, 160174, doi:10.1175/WAF984.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández-González, S., J. L. Sánchez, E. Gascón, L. López, E. García-Ortega, and A. Merino, 2014: Weather features associated with aircraft icing conditions: A case study. Sci. World J., 2014, 117, doi:10.1155/2014/279063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garciá-Ortega, E., L. López, J. L. Sánchez, and J. L. Marcos, 2006: Microphysical analysis at the cloud edge of a severe hailstorm. Atmos. Res., 82, 337349, doi:10.1016/j.atmosres.2006.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, doi:10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp.

  • Jiménz, P. A., J. Dudhia, J. F. González-Rouco, J. Montávez, E. García-Bustamante, J. Navarro, J. V.-G. de Arellano, and A. Munöz-Roldán, 2013: An evaluation of WRF’s ability to reproduce the surface wind over complex terrain based on typical circulation patterns. J. Geophys. Res. Atmos., 118, 76517669, doi:10.1002/jgrd.50585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J. H., and H. Y. Chun, 2010: A numerical study of clean-air turbulence (CAT) encounters over South Korea on 2 April 2007. J. Appl. Meteor. Climatol., 49, 23812403, doi:10.1175/2010JAMC2449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J. H., and H. Y. Chun, 2012: Numerical simulation of convectively induced turbulence above deep convection. J. Appl. Meteor. Climatol., 51, 11801200, doi:10.1175/JAMC-D-11-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J. H., H. Y. Chun, R. D. Sharman, and S. T. Trier, 2014: Numerical simulation of convectively induced turbulence above deep convection. Mon. Wea. Rev., 142, 27942813, doi:10.1175/MWR-D-14-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., G. A. Isaac, J. W. Strapp, S. G. Cober, and H. W. Barker, 2007: In situ measurements of liquid water content profiles in midlatitude stratiform clouds. Quart. J. Roy. Meteor. Soc., 133, 16931699, doi:10.1002/qj.147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P., S. Kotlarski, C. Moseley, K. Sieck, H. Frey, M. Stoffel, and D. Jacob, 2015: Response of Karakoram-Himalayan glaciers to climate variability and climatic change: A regional climate model assessment. Geophys. Res. Lett., 42, 18181825, doi:10.1002/2015GL063392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, S. B. Trier, R. G. Fovell, and J. K. Williams, 2012: Recent advances in the understanding of near-cloud turbulence. Bull. Amer. Meteor. Soc., 93, 499515, doi:10.1175/BAMS-D-11-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., H. H. Shin, S. Y. Hong, P. A. Jiménz, J. Dudhia, and J. Hong, 2015: Impacts of subgrid-scale orography parameterization on simulated surface layer wind and monsoonal precipitation in the high-resolution WRF model. J. Geophys. Res. Atmos., 120, 644653, doi:10.1002/2014JD022747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1971: Observations of mountain-induced turbulence. J. Geophys. Res., 76, 65856588, doi:10.1029/JC076i027p06585.

  • Marwitz, J., 2013: Comments on “Characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification.” J. Appl. Meteor. Climatol., 52, 16701672, doi:10.1175/JAMC-D-12-096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marwitz, J., M. K. Politovich, B. C. Bernstein, F. Ralph, P. Neiman, R. Ashenden, and J. Bresch, 1997: Meteorological conditions associated with the ATR-72 aircraft accident near Roselawn, Indiana on 31 October 1994. Bull. Amer. Meteor. Soc., 78, 4152, doi:10.1175/1520-0477(1997)078<0041:MCAWTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maussion, F., D. Scherer, T. Mölg, E. Collier, J. Curio, and R. Finkelnburg, 2014: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J. Climate, 27, 19101927, doi:10.1175/JCLI-D-13-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L., J. Tuttle, and C. Knight, 1988: Airflow and hail growth in a severe northern high plains supercell. J. Atmos. Sci., 45, 736762, doi:10.1175/1520-0469(1988)045<0736:AAHGIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1970: Concentrations of ice crystals in clouds. Bull. Amer. Meteor. Soc., 51, 474479, doi:10.1175/1520-0477(1970)051<0474:COICIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and D. C. Fritts, 1992: Sources of mesoscale variability of gravity waves. Part I: Topographic excitation. J. Atmos. Sci., 49, 101110, doi:10.1175/1520-0469(1992)049<0101:SOMVOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, J., 1973: The airflow over mountains: Research 1958-1972. WMO Tech. Note 127, 73 pp.

  • Norris, F., L. M. Carvalho, C. Jones, and F. Cannon, 2015: WRF simulations of two extreme snowfall events associated with contrasting extratropical cyclones over the western and central Himalaya. J. Geophys. Res. Atmos., 120, 31143138, doi:10.1002/2014JD022592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, T. J., and T. P. Lane, 2013: Trapped mountain waves during a light aircraft accident. Aust. Meteor. Oceanogr. J., 63, 377389.

  • Regmi, R. P., 2014a: Aviation hazards in the sky over Thada as revealed by meso-scale meteorological modeling. J. Inst. Sci. Technol., 19, 4147, doi:10.3126/jist.v19i2.13854.

    • Search Google Scholar
    • Export Citation
  • Regmi, R. P., 2014b: Aviation hazards over the Jomsom Airport of Nepal as revealed by numerical simulation of local flows. J. Inst. Sci. Technol., 19, 112120, doi:10.3126/jist.v19i1.13836.

    • Search Google Scholar
    • Export Citation
  • Regmi, R. P., and S. Maharjan, 2015: Trapped mountain wave excitations over the Kathmandu valley, Nepal. Asia-Pac. J. Atmos. Sci., 51, 303309, doi:10.1007/s13143-015-0078-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Regmi, R. P., T. Kitada, and G. Kurata, 2003: Numerical simulation of late winter time local flows in Kathmandu valley, Nepal: Implication for air pollution transport. J. Appl. Meteor., 42, 389403, doi:10.1175/1520-0450(2003)042<0389:NSOLWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1979: Climate and Weather in the Tropics. Academic Press, 611 pp.

  • Schichtel, M., 1988: Specification of precipitation type in Oklahoma winter storms. M.S. thesis, Department of Meteorology, School of Meteorology, University of Oklahoma, 131 pp.

  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, doi:10.1002/qj.49707532308.

  • Sharman, R., J. Doyle, and M. Shapiro, 2012: An investigation of a commercial aircraft encounter with severe clean-air turbulence over western Greenland. J. Appl. Meteor. Climatol., 51, 4253, doi:10.1175/JAMC-D-11-044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., 1987: Gravity Currents: In the Environment and the Laboratory. Ellis Horwood, 244 pp.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 133 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Thompson, G., R. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519524, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurtele, M. G., 1970: Meteorological conditions surrounding the paradise airline crash of 1 March 1964. J. Appl. Meteor., 9, 787797, doi:10.1175/1520-0450(1970)009<0787:MCSTPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurtele, M. G., R. D. Sharman, and A. Dutta, 1996: Atmospheric lee waves. Annu. Rev. Fluid Mech., 28, 429476, doi:10.1146/annurev.fl.28.010196.002241.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 388 193 5
PDF Downloads 239 130 4

Large-Scale Gravity Current over the Middle Hills of the Nepal Himalaya: Implications for Aircraft Accidents

Ram P. RegmiNational Atmospheric Resource and Environmental Research Laboratory, Central Department of Physics, Tribhuvan University, Kirtipur, Nepal

Search for other papers by Ram P. Regmi in
Current site
Google Scholar
PubMed
Close
,
Toshihiro KitadaNational Institute of Technology, Gifu College, Motosu, Gifu Prefecture, Japan

Search for other papers by Toshihiro Kitada in
Current site
Google Scholar
PubMed
Close
,
Jimy DudhiaNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jimy Dudhia in
Current site
Google Scholar
PubMed
Close
, and
Sangeeta MaharjanNational Atmospheric Resource and Environmental Research Laboratory, Central Department of Physics, Tribhuvan University, Kirtipur, Nepal

Search for other papers by Sangeeta Maharjan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Nepal has been the location of a series of fatal aircraft accidents, raising serious concerns about civil aviation security and the safety of passengers. However, significant studies on weather patterns associated with the airports and air routes of the Himalayan complex terrain and their implications for aviation activities are yet to be carried out. The present study numerically reconstructs the prevailing weather conditions and puts forward some possible causes behind the most recent fatal aircraft accident in the foothills of the western Nepal Himalaya at 0730 UTC (1315 LST) 16 February 2014. The weather patterns have been numerically simulated at 1-km2 horizontal grid resolution using the Weather Research and Forecasting (WRF) modeling system. The reconstructed weather situation shows the existence of a low-level cloud ceiling, supercooled cloud water and hail, trapped mountain waves, supercritical descent of a strong tail wind, and the development of turbulence at the altitude of the flight path followed by the aircraft. The aircraft might have gone through a series of weather hazards including visibility obstruction, moderate turbulence, abnormal loss in altitude, and icing. It is concluded that the weather situation over the region was adverse enough to affect small aircraft and therefore that it might have played an important role leading to the fatal accident. The development of hazardous weather over the region may be attributed to a previously unanticipated large-scale easterly gravity current over the middle hills of the Nepal Himalaya. The gravity current originated from the central high Himalayan mountainous region located northeast of the Kathmandu valley and traveled more than 200 km, reaching the foothills of the western Nepal Himalaya.

Current affiliation: Toyohashi University of Technology, Toyohashi, Japan.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ram P. Regmi, ram.p.regmi@gmail.com

Abstract

Nepal has been the location of a series of fatal aircraft accidents, raising serious concerns about civil aviation security and the safety of passengers. However, significant studies on weather patterns associated with the airports and air routes of the Himalayan complex terrain and their implications for aviation activities are yet to be carried out. The present study numerically reconstructs the prevailing weather conditions and puts forward some possible causes behind the most recent fatal aircraft accident in the foothills of the western Nepal Himalaya at 0730 UTC (1315 LST) 16 February 2014. The weather patterns have been numerically simulated at 1-km2 horizontal grid resolution using the Weather Research and Forecasting (WRF) modeling system. The reconstructed weather situation shows the existence of a low-level cloud ceiling, supercooled cloud water and hail, trapped mountain waves, supercritical descent of a strong tail wind, and the development of turbulence at the altitude of the flight path followed by the aircraft. The aircraft might have gone through a series of weather hazards including visibility obstruction, moderate turbulence, abnormal loss in altitude, and icing. It is concluded that the weather situation over the region was adverse enough to affect small aircraft and therefore that it might have played an important role leading to the fatal accident. The development of hazardous weather over the region may be attributed to a previously unanticipated large-scale easterly gravity current over the middle hills of the Nepal Himalaya. The gravity current originated from the central high Himalayan mountainous region located northeast of the Kathmandu valley and traveled more than 200 km, reaching the foothills of the western Nepal Himalaya.

Current affiliation: Toyohashi University of Technology, Toyohashi, Japan.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ram P. Regmi, ram.p.regmi@gmail.com
Save