Impact of Simulated Twenty-First-Century Changes in Extratropical Cyclones on Coastal Flooding at the Battery, New York City

Keith J. Roberts School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Keith J. Roberts in
Current site
Google Scholar
PubMed
Close
,
Brian A. Colle School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Brian A. Colle in
Current site
Google Scholar
PubMed
Close
, and
Nathan Korfe School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Nathan Korfe in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper explores simulated changes to the cool-season (November–March) storm-surge and coastal-flooding events at the Battery in New York City, New York (NYC), during most of the twenty-first century using several climate models and a previously developed multilinear regression model. The surface wind and pressure forcing for the surge predictions are obtained from an ensemble of 6 coupled global climate models (GCM) and 30 members from the Community Earth System Model. Using the “RCP8.5” emission scenario, both the single-model and multimodel ensemble means yielded insignificant (significance level p > 0.05) simulated changes to the median surge event (>0.61 m above astronomical tide) between a historical period (1979–2004) and the mid-to-late twenty-first century (2054–79). There is also little change in the return interval for the moderate-to-high surge events. By the mid-to-late twenty-first century, there is a poleward shift of the mean surface cyclone track in many of the models and most GCMs demonstrate an intensification of the average cyclone. There is little effect on the future surge events at the Battery because most of these storm changes are not in a region that favors more or higher-amplitude surges at NYC. Rather, projected sea level rise dominates the future simulated change in the number of flooding events by the mid-to-late twenty-first century. For example, the projections show about 23 times as many coastal-flooding events (tide + surge ≥ 2.44 m above mean lower low water; 1983–2001) in 2079 when compared with 1979, and the return intervals for some major coastal floods (e.g., the December 1992 northeaster) decrease by a factor of 3–4.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Brian A. Colle, brian.colle@stonybrook.edu

Abstract

This paper explores simulated changes to the cool-season (November–March) storm-surge and coastal-flooding events at the Battery in New York City, New York (NYC), during most of the twenty-first century using several climate models and a previously developed multilinear regression model. The surface wind and pressure forcing for the surge predictions are obtained from an ensemble of 6 coupled global climate models (GCM) and 30 members from the Community Earth System Model. Using the “RCP8.5” emission scenario, both the single-model and multimodel ensemble means yielded insignificant (significance level p > 0.05) simulated changes to the median surge event (>0.61 m above astronomical tide) between a historical period (1979–2004) and the mid-to-late twenty-first century (2054–79). There is also little change in the return interval for the moderate-to-high surge events. By the mid-to-late twenty-first century, there is a poleward shift of the mean surface cyclone track in many of the models and most GCMs demonstrate an intensification of the average cyclone. There is little effect on the future surge events at the Battery because most of these storm changes are not in a region that favors more or higher-amplitude surges at NYC. Rather, projected sea level rise dominates the future simulated change in the number of flooding events by the mid-to-late twenty-first century. For example, the projections show about 23 times as many coastal-flooding events (tide + surge ≥ 2.44 m above mean lower low water; 1983–2001) in 2079 when compared with 1979, and the return intervals for some major coastal floods (e.g., the December 1992 northeaster) decrease by a factor of 3–4.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Brian A. Colle, brian.colle@stonybrook.edu
Save
  • Archer, C. L., and M. Z. Jacobson, 2005: Evaluation of global wind power. J. Geophys. Res., 110, D12110, doi:10.1029/2004JD005462.

  • Bernier, N. B., and K. R. Thompson, 2007: Tide–surge interaction off the east coast of Canada and northeastern United States. J. Geophys. Res., 112, C06008, doi:10.1029/2006JC003793.

    • Search Google Scholar
    • Export Citation
  • Butler, A., J. E. Heffernan, J. A. Tawn, R. A. Flather, and K. J. Horsburgh, 2007: Extreme value analysis of decadal variations in storm surge elevations. J. Mar. Syst., 67, 189200, doi:10.1016/j.jmarsys.2006.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Center for Operational Oceanographic Products and Services, 2016: Tides and currents map. NOAA, accessed 30 March 2016. [Available online at http://tidesandcurrents.noaa.gov/.]

  • Chang, E. K. M., 2013: CMIP5 projection of significant reduction in extratropical cyclone activity over North America. J. Climate, 26, 99039922, doi:10.1175/JCLI-D-13-00209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, doi:10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., F. Buonaiuto, M. J. Bowman, R. E. Wilson, R. Flood, R. Hunter, A. Mintz, and D. Hill, 2008: New York City’s vulnerability to coastal flooding: Storm surge modeling of past cyclones. Bull. Amer. Meteor. Soc., 89, 829841, doi:10.1175/2007BAMS2401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., K. Rojowsky, and F. Buonaito, 2010: New York City storm surges: Climatology and an analysis of the wind and cyclone evolution. J. Appl. Meteor. Climatol., 49, 85100, doi:10.1175/2009JAMC2189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Z. Zhang, K. A. Lombardo, E. Chang, P. Liu, and M. Zhang, 2013: Historical evaluation and future prediction of eastern North America and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate, 26, 68826903, doi:10.1175/JCLI-D-12-00498.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., M. E. Hirsch, and S. J. Colucci, 2002: Statistical prediction of seasonal East Coast winter storm frequency. J. Climate, 15, 11011117, doi:10.1175/1520-0442(2002)015<1101:SPOSEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devis, A., N. P. M. van Lipzig, and M. Demuzere, 2014: A height dependent evaluation of wind and temperature over Europe in the CMIP5 Earth system models. Climate Res., 61, 4156, doi:10.3354/cr01242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaconis, P., and B. Efron, 1983: Computer-intensive methods in statistics. Sci. Amer., 248 (5), 116130, doi:10.1038/scientificamerican0583-116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flather, R. A., J. A. Smith, J. D. Richards, C. Bell, and D. L. Blackman, 1998: Direct estimates of extreme storm surge elevations from a 40-year numerical model simulation and from observations. Global Atmos. Ocean Syst., 6, 165176.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., C. A. Davis, and M. A. Shapiro, 2013: Intensification of Hurricane Sandy (2012) through extratropical warm core seclusion. Mon. Wea. Rev., 141, 42964321, doi:10.1175/MWR-D-13-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915929, doi:10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

  • Georgas, N., 2010: Establishing confidence in marine forecast systems: The design of a high fidelity marine forecast model for the NY/NJ Harbor estuary and its adjoining coastal waters. Ph.D. thesis, Stevens Institute of Technology, 272 pp. [Available online at http://web.stevens.edu/ses/documents/fileadmin/documents/pdf/PhD-dissertation_signed-o.pdf.]

  • Hirsch, M. E., A. T. DeGaetano, and S. J. Colucci, 2001: An East Coast winter storm climatology. J. Climate, 14, 882899, doi:10.1175/1520-0442(2001)014<0882:AECWSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 25732586, doi:10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 34583465, doi:10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, R., C. Little, V. Gornitz, D. Bader, and M. Oppenheimer, 2015: New York City Panel on Climate Change 2015 report: Sea level rise and coastal storms. Ann. N. Y. Acad. Sci., 1336, 3644, doi:10.1111/nyas.12593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, S. A., E. A. Meindl, and D. B. Gilhousen, 1994: Determining the power-law wind-profile exponent under near-neutral stability conditions at sea. J. Appl. Meteor., 33, 757765, doi:10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lomax, R. G., 2007: Statistical Concepts: A Second Course. Taylor and Francis Group, 418 pp.

  • Lowe, J. A., and J. M. Gregory, 2005: The effects of climate change on storm surges around the United Kingdom. Philos. Trans. Roy. Soc. London, 363, 13131328, doi:10.1098/rsta.2005.1570.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., and D. R. Whitney, 1947: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 18, 5060, doi:10.1214/aoms/1177730491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marciano, C. G., G. M. Lackmann, and W. A. Robinson, 2015: Changes in U.S. east coast cyclone dynamics with climate change. J. Climate, 28, 468484, doi:10.1175/JCLI-D-14-00418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., G. J. Boer, J.-P. Blanchet, and M. Lazare, 1992: The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J. Climate, 5, 10131044, doi:10.1175/1520-0442(1992)005<1013:TCCCSG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michou, M., and Coauthors, 2011: A new version of the CNRM chemistry-climate model, CNRM-CCM: Description and improvements from the CCMVal-2 simulations. Geosci. Model Dev., 4, 873900, doi:10.5194/gmd-4-873-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizuta, R., M. Matsueda, H. Endo, and S. Yukimoto, 2011: Future change in extratropical cyclones associated with change in the upper troposphere. J. Climate, 24, 64566470, doi:10.1175/2011JCLI3969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., U. Ulbrich, G. C. Leckebusch, T. Spangehl, M. Reyers, and S. Zacharias, 2007: Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Climate Dyn., 29, 195210, doi:10.1007/s00382-007-0230-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., J. T. Schoof, and R. J. Barthelmie, 2005: Empirical downscaling of wind speed probability distributions. J. Geophys. Res., 110, D19109, doi:10.1029/2005JD005899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Resio, D. T., and J. J. Westerink, 2008: Modeling the physics of storm surges. Phys. Today, 61, 3338, doi:10.1063/1.2982120.

  • Roberts, K. J., B. A. Colle, N. Georgas, and S. B. Munch, 2015: A regression-based approach for cool-season storm surge predictions along the New York–New Jersey coast. J. Appl. Meteor. Climatol., 54, 17731791, doi:10.1175/JAMC-D-14-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmun, H., and A. Molod, 2015: The use of a statistical model of storm surge as a bias correction for dynamical surge models and its applicability along the U.S. east coast. J. Mar. Sci. Eng., 3, 7386, doi:10.3390/jmse3010073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmun, H., A. Molod, K. Wisniewska, and F. S. Buonaiuto, 2011: Statistical prediction of the storm surge associated with cool-weather storms at the Battery, New York. J. Appl. Meteor. Climatol., 50, 273282, doi:10.1175/2010JAMC2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talke, S. A., P. Orton, and D. A. Jay, 2014: Increasing storm tides in New York Harbor, 1844–2013. Geophys. Res. Lett., 41, 31493155, doi:10.1002/2014GL059574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, 365, 20532075, doi:10.1098/rsta.2007.2076.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and H. Reichardt, 1997: A scenario of storm surge statistics for the German Bight at the expected time of doubled atmospheric carbon dioxide concentration. J. Climate, 10, 26532662, doi:10.1175/1520-0442(1997)010<2653:ASOSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and K. Woth, 2008: Storm surges: Perspectives and options. Sustainability Sci., 3, 3343, doi:10.1007/s11625-008-0044-2.

  • WASA Group, 1998: Changing waves and storms in the northeast Atlantic? Bull. Amer. Meteor. Soc., 79, 741760, doi:10.1175/1520-0477(1998)079<0741:CWASIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woth, K., R. Weisse, and H. von Storch, 2006: Climate change and North Sea storm surge extremes: An ensemble study of storm surge extremes expected in a changed climate projected by four different regional climate models. Ocean Dyn., 56, 315, doi:10.1007/s10236-005-0024-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123147, doi:10.1007/s00382-008-0487-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., and Z.-L. Yang, 2012: An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J. Climate, 25, 62716286, doi:10.1175/JCLI-D-12-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, K. I. Hodges, P. G. Sansom, and D. B. Stephenson, 2013: A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Climate, 26, 58465862, doi:10.1175/JCLI-D-12-00573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., H. J. Bokuniewicz, L. Wuyin, S.-G. Jang, and P. Liu, 2014: Climate risk report for Nassau and Suffolk. New York State Resilience Institute for Storms and Emergencies Tech. Rep. TR‐0‐14‐01, 49 pp. [Available online at http://nysrise.org/docs/NYSRISE-SBU-ClimateRiskReportforNassauandSuffolk-August2014.pdf.]

  • Zhang, Z. S., and Coauthors, 2012: Pre-industrial and mid-Pliocene simulations with NorESM-L. Geosci. Model Dev., 5, 523533, doi:10.5194/gmd-5-523-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2955 1839 28
PDF Downloads 474 95 6