• Agarwal, P., and A. Skupin, 2008: Self-Organising Maps: Applications in Geographic Information Science. John Wiley and Sons, 214 pp.

    • Crossref
    • Export Citation
  • Balashov, N. V., A. M. Thompson, S. J. Piketh, and K. E. Langerman, 2014: Surface ozone variability and trends over the South African Highveld from 1990 to 2007. J. Geophys. Res., 119, 43234342, doi:10.1002/2013JD020555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaver, S., and A. Palazoglu, 2009: Influence of synoptic and mesoscale meteorology on ozone pollution potential for San Joaquin Valley of California. Atmos. Environ., 43, 17791788, doi:10.1016/j.atmosenv.2008.12.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, A. W., and A. Azzalini, 1997: Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations. Oxford Statistical Science Series, Vol. 18, Oxford University Press, 204 pp.

  • Burrows, W. R., M. Benjamin, S. Beauchamp, E. R. Lord, D. McCollor, and B. Thomson, 1995: CART decision-tree statistical analysis and prediction of summer season maximum surface ozone for the Vancouver, Montreal, and Atlantic regions of Canada. J. Appl. Meteor., 34, 18481862, doi:10.1175/1520-0450(1995)034<1848:CDTSAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1991: Mid-latitude Weather Systems. HarperCollins Academic, 507 pp.

  • Carmichael, G. R., A. Sandu, T. Chai, D. N. Daescu, E. M. Constantinescu, and Y. Tang, 2008: Predicting air quality: Improvements through advanced methods to integrate models and measurements. J. Comput. Phys., 227, 35403571, doi:10.1016/j.jcp.2007.02.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. M., J. P. Dallavalle, and H. R. Glahn, 1989: Statistical forecasts based on the National Meteorological Center’s numerical weather prediction system. Wea. Forecasting, 4, 401412, doi:10.1175/1520-0434(1989)004<0401:SFBOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chai, T., and Coauthors, 2013: Evaluation of the United States National Air Quality Forecast Capability experimental real-time predictions in 2010 using Air Quality System ozone and NO2 measurements. Geosci. Model Dev., 6, 18311850, doi:10.5194/gmd-6-1831-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cobourn, W. G., 2007: Accuracy and reliability of an automated air quality forecast system for ozone in seven Kentucky metropolitan areas. Atmos. Environ., 41, 58635875, doi:10.1016/j.atmosenv.2007.03.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comrie, A. C., 1997: Comparing neural networks and regression models for ozone forecasting. J. Air Waste Manag. Assoc., 47, 653663, doi:10.1080/10473289.1997.10463925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, O. R., A. O. Langford, D. D. Parrish, and D. W. Fahey, 2015: Challenges of a lowered U.S. ozone standard. Science, 348, 10961097, doi:10.1126/science.aaa5748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, J. H., and K. E. Pickering, 2014: DISCOVER-AQ: Advancing strategies for air quality observations in the next decade. EM: The Magazine for Environmental Managers, Air& Waste Management Association, Pittsburgh, PA, 4–7. [Available online at https://discover-aq.larc.nasa.gov/pdf/EM0914-60pFNL(L)-Copyright-1.pdf.]

  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dabberdt, W. F., and Coauthors, 2004: Meteorological research needs for improved air quality forecasting: Report of the 11th Prospectus Pevelopment Team of the U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 85, 563586, doi:10.1175/BAMS-85-4-563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., X. Deng, Y. Zhou, and R. Stull, 2006a: Ozone ensemble forecasts: 1. A new ensemble design. J. Geophys. Res., 111, D05307, doi:10.1029/2005JD006310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., J. P. Hacker, Y. Zhou, X. Deng, and R. Stull, 2006b: Probabilistic aspects of meteorological and ozone regional ensemble forecasts. J. Geophys. Res., 111, D24307, doi:10.1029/2005JD006917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuzere, M., and N. P. M. van Lipzig, 2010: A new method to estimate air-quality levels using a synoptic-regression approach. Part I: Present-day O3 and PM10 analysis. Atmos. Environ., 44, 13411355, doi:10.1016/j.atmosenv.2009.06.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz-Robles, L. A., J. C. Ortega, J. S. Fu, G. D. Reed, J. C. Chow, J. G. Watson, and J. A. Moncada-Herrera, 2008: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile. Atmos. Environ., 42, 83318340, doi:10.1016/j.atmosenv.2008.07.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Djalalova, I., L. Delle Monache, and J. Wilczak, 2015: PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmos. Environ., 108, 7687, doi:10.1016/j.atmosenv.2015.02.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dueñas, C., M. C. Fernández, S. Cañete, J. Carretero, and E. Liger, 2002: Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean coast. Sci. Total Environ., 299, 97113, doi:10.1016/S0048-9697(02)00251-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutot, A.-L., J. Rynkiewicz, F. E. Steiner, and J. Rude, 2007: A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environ. Model. Software, 22, 12611269, doi:10.1016/j.envsoft.2006.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Environmental Modeling Center, 2003: The GFS atmospheric model. NCEP Office Note 442, 14 pp. [Available online at http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on442.pdf.]

  • EPA, 2003: Guidelines for developing an air quality (ozone and PM2.5) forecasting program. Environmental Protection Agency Rep. EPA-456/R-03-002, 126 pp. [Available online at https://www3.epa.gov/airnow/aq_forecasting_guidance-1016.pdf.]

  • EPA, 2015: NAAQS table. Environmental Protection Agency. [Available online at https://www.epa.gov/criteria-air-pollutants/naaqs-table.]

  • EPA, 2016: Air quality index (AQI) basics. Environmental Protection Agency. [Available online at https://airnow.gov/index.cfm?action=aqibasics.aqi.]

  • Frost, G. J., and J. F. Meagher, 2010: Addressing scientific challenges for air quality forecasting: International Workshop on Air Quality Forecasting Research; Boulder, Colorado, 2–3 December. 2009. Eos, Trans. Amer. Geophys. Union, 91, 145145, doi:10.1029/2010EO160008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, M. W., and S. R. Dorling, 1998: Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ., 32, 26272636, doi:10.1016/S1352-2310(97)00447-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garner, G. G., and A. M. Thompson, 2012: The value of air quality forecasting in the mid-Atlantic region. Wea. Climate Soc., 4, 6979, doi:10.1175/WCAS-D-10-05010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garner, G. G., and A. M. Thompson, 2013: Ensemble statistical post-processing of the National Air Quality Forecast Capability: Enhancing ozone forecasts in Baltimore, Maryland. Atmos. Environ., 81, 517522, doi:10.1016/j.atmosenv.2013.09.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., S. E. Haupt, and G. S. Young, 2008: The regime dependence of optimally weighted ensemble model consensus forecasts of surface temperature. Wea. Forecasting, 23, 11461161, doi:10.1175/2008WAF2007078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550560, doi:10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitson, B., and R. Crane, 2002: Self-organizing maps: Applications to synoptic climatology. Climate Res., 22, 1326, doi:10.3354/cr022013.

  • Jensen, A. A., A. M. Thompson, and F. J. Schmidlin, 2012: Classification of Ascension Island and Natal ozonesondes using self-organizing maps. J. Geophys. Res., 117, D04302, doi:10.1029/2011JD016573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jhun, I., B. Coull, A. Zanobetti, and P. Koutrakis, 2015: The impact of nitrogen oxides concentration decreases on ozone trends in the USA. Air Qual. Atmos. Health, 8, 283292, doi:10.1007/s11869-014-0279-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., S. B. Feldstein, and B. Tremblay, 2008: The continuum of Northern Hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps. J. Climate, 21, 63546371, doi:10.1175/2008JCLI2380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 2001: Self-Organizing Maps. Springer Series in Information Sciences, Vol. 30, Springer, 502 pp., doi:10.1007/978-3-642-56927-2.

    • Crossref
    • Export Citation
  • Kohonen, T., 2013: Essentials of the self-organizing map. Neural Networks, 37, 5265, doi:10.1016/j.neunet.2012.09.018.

  • Lelieveld, J., and P. J. Crutzen, 1990: Influences of cloud photochemical processes on tropospheric ozone. Nature, 343, 227233, doi:10.1038/343227a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and C. N. K. Mooers, 2006: Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res., 111, C05018, doi:10.1029/2005JC003117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzban, C., S. Sandgathe, and E. Kalnay, 2006: MOS, perfect prog, and reanalysis. Mon. Wea. Rev., 134, 657663, doi:10.1175/MWR3088.1.

  • McDonald, B. C., T. R. Dallmann, E. W. Martin, and R. A. Harley, 2012: Long-term trends in nitrogen oxide emissions from motor vehicles at national, state, and air basin scales. J. Geophys. Res., 117, D00V18, doi:10.1029/2012JD018304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearce, J. L., J. Beringer, N. Nicholls, R. J. Hyndman, P. Uotila, and N. J. Tapper, 2011: Investigating the influence of synoptic-scale meteorology on air quality using self-organizing maps and generalized additive modelling. Atmos. Environ., 45, 128136, doi:10.1016/j.atmosenv.2010.09.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perez, P., and J. Reyes, 2006: An integrated neural network model for PM10 forecasting. Atmos. Environ., 40, 28452851, doi:10.1016/j.atmosenv.2006.01.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, A., C. Risien, and F. Shillington, 2003: Using self-organizing maps to identify patterns in satellite imagery. Prog. Oceanogr., 59, 223239, doi:10.1016/j.pocean.2003.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, W. F., 1995: Forecasting severe ozone episodes in the Baltimore metropolitan area. Atmos. Environ., 29, 23872398, doi:10.1016/1352-2310(94)00302-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 2012: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed. John Wiley and Sons, 1203 pp.

  • Shad, R., M. S. Mesgari, and A. Shad, 2009: Predicting air pollution using fuzzy genetic linear membership kriging in GIS. Comput. Environ. Urban Syst., 33, 472481, doi:10.1016/j.compenvurbsys.2009.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillman, S., and P. J. Samson, 1995: Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments. J. Geophys. Res., 100, 11 49711 508, doi:10.1029/94JD02146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stajner, I., and Coauthors, 2014: National Air Quality Forecast Capability: Status and research needs. 2010 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A33F-3254.

  • Stauffer, R. M., A. M. Thompson, and G. S. Young, 2016: Tropospheric ozonesonde profiles at long-term U.S. monitoring sites: 1. A climatology based on self-organizing maps. J. Geophys. Res. Atmos., 121, 13201339, doi:10.1002/2015JD023641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., 1984: The effect of clouds on photolysis rates and ozone formation in the unpolluted troposphere. J. Geophys. Res., 89, 13411349, doi:10.1029/JD089iD01p01341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, M. L., J. Reynolds, L. H. Cox, P. Guttorp, and P. D. Sampson, 2001: A review of statistical methods for the meteorological adjustment of tropospheric ozone. Atmos. Environ., 35, 617630, doi:10.1016/S1352-2310(00)00261-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tu, J., Z.-G. Xia, H. Wang, and W. Li, 2007: Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China. Atmos. Res., 85, 310337, doi:10.1016/j.atmosres.2007.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Wal, J., and L. Janssen, 2000: Analysis of spatial and temporal variations of PM10 concentrations in the Netherlands using Kalman filtering. Atmos. Environ., 34, 36753687, doi:10.1016/S1352-2310(00)00085-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2009: Skill and uncertainty of a regional air quality model ensemble. Atmos. Environ., 43, 48224832, doi:10.1016/j.atmosenv.2008.09.083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vesanto, J., J. Himberg, E. Alhoniemi, and J. Parhankangas, 2000: SOM toolbox for Matlab 5. SOM Toolbox Team Rep. A57, Helsinki University of Technology, 59 pp. [Available online at http://www.cis.hut.fi/somtoolbox/package/papers/techrep.pdf.]

  • Wilczak, J. M., and Coauthors, 2009: Analysis of regional meteorology and surface ozone during the TexAQS II field program and an evaluation of the NMM-CMAQ and WRF-Chem air quality models. J. Geophys. Res., 114, D00F14, doi:10.1029/2008JD011675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Wilson, L. J., S. Beauregard, A. E. Raftery, and R. Verret, 2007: Calibrated surface temperature forecasts from the Canadian ensemble prediction system using Bayesian model averaging. Mon. Wea. Rev., 135, 13641385, doi:10.1175/MWR3347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., M. Bocquet, V. Mallet, C. Seigneur, and A. Baklanov, 2012a: Real-time air quality forecasting, part I: History, techniques, and current status. Atmos. Environ., 60, 632655, doi:10.1016/j.atmosenv.2012.06.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., M. Bocquet, V. Mallet, C. Seigneur, and A. Baklanov, 2012b: Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects. Atmos. Environ., 60, 656676, doi:10.1016/j.atmosenv.2012.02.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 330 184 7
PDF Downloads 260 148 3

Probabilistic Forecasting of Surface Ozone with a Novel Statistical Approach

Nikolay V. BalashovDepartment of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Nikolay V. Balashov in
Current site
Google Scholar
PubMed
Close
,
Anne M. ThompsonDepartment of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, and Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Anne M. Thompson in
Current site
Google Scholar
PubMed
Close
, and
George S. YoungDepartment of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by George S. Young in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The recent change in the Environmental Protection Agency’s surface ozone regulation, lowering the surface ozone daily maximum 8-h average (MDA8) exceedance threshold from 75 to 70 ppbv, poses significant challenges to U.S. air quality (AQ) forecasters responsible for ozone MDA8 forecasts. The forecasters, supplied by only a few AQ model products, end up relying heavily on self-developed tools. To help U.S. AQ forecasters, this study explores a surface ozone MDA8 forecasting tool that is based solely on statistical methods and standard meteorological variables from the numerical weather prediction (NWP) models. The model combines the self-organizing map (SOM), which is a clustering technique, with a stepwise weighted quadratic regression using meteorological variables as predictors for ozone MDA8. The SOM method identifies different weather regimes, to distinguish between various modes of ozone variability, and groups them according to similarity. In this way, when a regression is developed for a specific regime, data from the other regimes are also used, with weights that are based on their similarity to this specific regime. This approach, regression in SOM (REGiS), yields a distinct model for each regime taking into account both the training cases for that regime and other similar training cases. To produce probabilistic MDA8 ozone forecasts, REGiS weighs and combines all of the developed regression models on the basis of the weather patterns predicted by an NWP model. REGiS is evaluated over the San Joaquin Valley in California and the northeastern plains of Colorado. The results suggest that the model performs best when trained and adjusted separately for an individual AQ station and its corresponding meteorological site.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Nikolay V. Balashov, nvb5011@psu.edu

Abstract

The recent change in the Environmental Protection Agency’s surface ozone regulation, lowering the surface ozone daily maximum 8-h average (MDA8) exceedance threshold from 75 to 70 ppbv, poses significant challenges to U.S. air quality (AQ) forecasters responsible for ozone MDA8 forecasts. The forecasters, supplied by only a few AQ model products, end up relying heavily on self-developed tools. To help U.S. AQ forecasters, this study explores a surface ozone MDA8 forecasting tool that is based solely on statistical methods and standard meteorological variables from the numerical weather prediction (NWP) models. The model combines the self-organizing map (SOM), which is a clustering technique, with a stepwise weighted quadratic regression using meteorological variables as predictors for ozone MDA8. The SOM method identifies different weather regimes, to distinguish between various modes of ozone variability, and groups them according to similarity. In this way, when a regression is developed for a specific regime, data from the other regimes are also used, with weights that are based on their similarity to this specific regime. This approach, regression in SOM (REGiS), yields a distinct model for each regime taking into account both the training cases for that regime and other similar training cases. To produce probabilistic MDA8 ozone forecasts, REGiS weighs and combines all of the developed regression models on the basis of the weather patterns predicted by an NWP model. REGiS is evaluated over the San Joaquin Valley in California and the northeastern plains of Colorado. The results suggest that the model performs best when trained and adjusted separately for an individual AQ station and its corresponding meteorological site.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Nikolay V. Balashov, nvb5011@psu.edu
Save