• Beard, K. V., and H. T. Ochs, 1995: Collisions between small precipitation drops. Part II: Formulas for coalescence, temporary coalescence, and satellites. J. Atmos. Sci., 52, 39773996, doi:10.1175/1520-0469(1995)052<3977:CBSPDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., and R. T. Bruintjes, 1997: Calculations pertaining to hygroscopic seeding with flares. J. Appl. Meteor., 36, 14491469, doi:10.1175/1520-0450(1997)036<1449:CPTHSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csanady, G., 1963: Turbulent diffusion of heavy particles in the atmosphere. J. Atmos. Sci., 20, 201208, doi:10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, E., 1910: On the velocity of steady fall of spherical particles through fluid medium. Proc. Roy. Soc. London, 83A, 357365, doi:10.1098/rspa.1910.0024.

    • Search Google Scholar
    • Export Citation
  • Dupont, J.-C., M. Haeffelin, A. Protat, D. Bouniol, N. Boyouk, and Y. Morille, 2012: Stratus fog formation and dissipation: A 6-day case study. Bound.-Layer Meteor., 143, 207225, doi:10.1007/s10546-012-9699-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourdel, C., O. Simonin, and E. Brunier, 1999: Two-Maxwellian equilibrium distribution function for the modelling of a binary mixture of particles. Circulating Fluidized Bed Technology VI: Proceedings of the 6th International Conference on Circulating Fluidized Beds, J. Werther, Ed., DECHEMA, 205210.

  • Hale, G. M., and M. R. Querry, 1973: Optical constants of water in the 200-nm to 200-µm wavelength region. Appl. Opt., 12, 555563, doi:10.1364/AO.12.000555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamer, W. J., and Y.-C. Wu, 1972: Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25°C. J. Phys. Chem. Ref. Data, 1, 10471100, doi:10.1063/1.3253108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, S., Z. Cai, Y. Zhang, J. Wang, Q. Yao, P. Li, and X. Li, 2015: Long-term trends in fog and boundary layer characteristics in Tianjin, China. Particuology, 20, 6168, doi:10.1016/j.partic.2014.02.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinds, W. C., 1982: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. John Wiley & Sons, 424 pp.

  • Jiusto, J. E., R. J. Pilié, and W. C. Kocmond, 1968: Fog modification with giant hygroscopic nuclei. J. Appl. Meteor., 7, 860869, doi:10.1175/1520-0450(1968)007<0860:FMWGHN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koening, L. R., 1971: Numerical experiments pertaining to warm-fog clearing. Mon. Wea. Rev., 99, 227241, doi:10.1175/1520-0493(1971)099<0227:NEPTWC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornfeld, P., 1970: Some numerical experiments for warm fog clearing by seeding with hygroscopic nuclei. J. Appl. Meteor., 9, 459463, doi:10.1175/1520-0450(1970)009<0459:SNEFWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruis, F. E., and K. A. Kusters, 1997: The collision rate of particles in turbulent flow. Chem. Eng. Commun., 158, 201230, doi:10.1080/00986449708936589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuba, N., and M. Murakami, 2010: Effect of hygroscopic seeding on warm rain clouds—Numerical study using a hybrid cloud microphysical model. Atmos. Chem. Phys., 10, 33353351, doi:10.5194/acp-10-3335-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, B. A., and B. A. Silverman, 1970: A comparison of the warm fog clearing capabilities of some hygroscopic materials. J. Appl. Meteor., 9, 634638, doi:10.1175/1520-0450(1970)009<0634:ACOTWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, D., J. Yang, S. Niu, and Z. Li, 2011: On the evolution and structure of a radiation fog event in Nanjing. Adv. Atmos. Sci., 28, 223237, doi:10.1007/s00376-010-0017-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, G. K., D. E. Terblanche, F. E. Steffens, and L. Fletcher, 1997: Results of South African cloud seeding experiments using hygroscopic flares. J. Appl. Meteor., 36, 14331447, doi:10.1175/1520-0450(1997)036<1433:ROTSAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nebuloni, R., 2005: Empirical relationships between extinction coefficient and visibility in fog. Appl. Opt., 44, 37953804, doi:10.1364/AO.44.003795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pigeonneau, F., 1998: Modélisation numérique des collisions de gouttes en écoulements laminaires et turbulents. Ph.D. thesis, Université Paris VI, 229 pp.

  • Pinsky, M., A. Khain, and M. Shapiro, 2001: Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. J. Atmos. Sci., 58, 742764, doi:10.1175/1520-0469(2001)058<0742:CEODIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rard, A. R., and S. L. Clegg, 1997: Critical evaluation of the thermodynamic properties of aqueous calcium chloride. 1. Osmotic and activity coefficients of 0–10.77 mol kg−1 aqueous calcium chloride solutions at 298.15 K and correlation with extended Pitzer ion-interaction models. J. Chem. Eng. Data, 42, 819849, doi:10.1021/je9700582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, R. C., J. M. Prausnitz, and T. K. Sherwood, 1977: The Properties of Gases and Liquids. 3rd ed. McGraw-Hill, 688 pp.

  • Reuge, N., J. Dexpert-Ghys, M. Verelst, and B. Caussat, 2008: Y2O3:Eu micronic particles synthesised by spray pyrolysis: Global modelling and optimisation of the evaporation stage. Chem. Eng. Process., 47, 731743, doi:10.1016/j.cep.2006.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reuge, N., P. Fede, J.-F. Berthoumieu, F. Foucoin, and O. Simonin, 2015: 1-D modeling of the denebulization of fogs by hygroscopic seeding. Proc. ASME/JSME/KSME 2015 Joint Fluids Engineering Conf./14th Int. Symp. on Gas-Liquid Two-Phase Flows, Seoul, South Korea, Fluids Engineering Division, 5 pp., doi:10.1115/AJKFluids2015-30188.

    • Crossref
    • Export Citation
  • Schaefer, V., 1946: The production of ice crystals in a cloud of supercooled water droplets. Science, 104, 457459, doi:10.1126/science.104.2707.457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, Y., A. Khain, M. Pinsky, and D. Rosenfeld, 2004: Effects of hygroscopic seeding on raindrop formation as seen from simulations using a 2000-bin spectral cloud parcel model. Atmos. Res., 71, 334, doi:10.1016/j.atmosres.2004.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silverman, B. A., and B. A. Kunkel, 1970: A numerical model of warm fog dissipation by hygroscopic particle seeding. J. Appl. Meteor., 9, 627633, doi:10.1175/1520-0450(1970)009<0627:ANMOWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Hop, H., Ed., 1989: Air Pollution Modeling and its Application VII. Nato Challenges of Modern Society, Vol. 7, Springer, 620 pp.

  • Yudine, M., 1959: Physical consideration on heavy-particle dispersion. Advances in Geophysics, Vol. 6, Academic Press, 185–191, doi:10.1016/S0065-2687(08)60106-5.

    • Crossref
    • Export Citation
  • Zaichik, L. I., P. Fede, O. Simonin, and V. M. Alipchenkov, 2009: Statistical models for predicting the effect of bidisperse particle collisions on particle velocities and stresses in homogeneous anisotropic turbulent flows. Int. J. Multiphase Flow, 35, 868878, doi:10.1016/j.ijmultiphaseflow.2009.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 163 78 3
PDF Downloads 125 69 0

Modeling of the Denebulization of Warm Fogs by Hygroscopic Seeding: Effect of Various Operating Conditions and of the Turbulence Intensity

N. ReugeInstitut de Mécanique des Fluides de Toulouse, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France

Search for other papers by N. Reuge in
Current site
Google Scholar
PubMed
Close
,
P. FedeInstitut de Mécanique des Fluides de Toulouse, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France

Search for other papers by P. Fede in
Current site
Google Scholar
PubMed
Close
,
J.-F. BerthoumieuACMG Agralis Services, Le Passage, France

Search for other papers by J.-F. Berthoumieu in
Current site
Google Scholar
PubMed
Close
,
F. FoucoinEtienne Lacroix, Muret, France

Search for other papers by F. Foucoin in
Current site
Google Scholar
PubMed
Close
, and
O. SimoninInstitut de Mécanique des Fluides de Toulouse, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France

Search for other papers by O. Simonin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study addresses the modeling of the denebulization (i.e., the removal of droplets) of warm fogs (T ≥ 0°C) by hygroscopic salt microparticles from the initial seeding at the top of the fog layer to the fall of the rain droplets on the ground. Two main phenomena can occur: condensation of water vapor on salted droplets and the concomitant evaporation of fog droplets, and coalescence between the salted droplets and the fog droplets. Three salts have been investigated: NaCl, CaCl2, and KCl. Based on the conservation equations, the modeling approach (1D) considers the hygroscopicity of the salts through the water activity in the aqueous solution and the coalescence induced by gravity and turbulence. From this study, NaCl is the most efficient salt in the tested operating conditions. Actually, this result can be explained by the strong hygroscopicity of this salt in very dilute solutions. From the calculations, 15 kg of NaCl particles of 6.7-μm diameter can dissipate a typical fog layer of 40 m in height within less than 17 min over 0.25 km2. According to the calculations, a fog layer of 100 m in height can be denebulized within 45 min. The contribution of the coalescence induced by gravity and by turbulence seems to have a negligible effect on the final horizontal visibility, the condensation/evaporation phenomena being preponderant for these operating conditions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: N. Reuge, reuge@free.fr

Abstract

This study addresses the modeling of the denebulization (i.e., the removal of droplets) of warm fogs (T ≥ 0°C) by hygroscopic salt microparticles from the initial seeding at the top of the fog layer to the fall of the rain droplets on the ground. Two main phenomena can occur: condensation of water vapor on salted droplets and the concomitant evaporation of fog droplets, and coalescence between the salted droplets and the fog droplets. Three salts have been investigated: NaCl, CaCl2, and KCl. Based on the conservation equations, the modeling approach (1D) considers the hygroscopicity of the salts through the water activity in the aqueous solution and the coalescence induced by gravity and turbulence. From this study, NaCl is the most efficient salt in the tested operating conditions. Actually, this result can be explained by the strong hygroscopicity of this salt in very dilute solutions. From the calculations, 15 kg of NaCl particles of 6.7-μm diameter can dissipate a typical fog layer of 40 m in height within less than 17 min over 0.25 km2. According to the calculations, a fog layer of 100 m in height can be denebulized within 45 min. The contribution of the coalescence induced by gravity and by turbulence seems to have a negligible effect on the final horizontal visibility, the condensation/evaporation phenomena being preponderant for these operating conditions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: N. Reuge, reuge@free.fr
Save