• Angevine, W. M., M. Tjernström, and M. Žagar, 2006: Modeling of the coastal boundary layer and pollutant transport in New England. J. Appl. Meteor. Climatol., 45, 137154, doi:10.1175/JAM2333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., L. Eddington, K. Durkee, C. Fairall, L. Bianco, and J. Brioude, 2012: Meteorological model evaluation for CalNex 2010. Mon. Wea. Rev., 140, 38853906, doi:10.1175/MWR-D-12-00042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., 1989: Numerical modelling of the offshore extent of sea breezes. Quart. J. Roy. Meteor. Soc., 115, 547570, doi:10.1002/qj.49711548707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., 1993: Effects of the large-scale flow on characteristic features of the sea breeze. J. Appl. Meteor. Climatol., 32, 116125, doi:10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banks, R. F., J. Tirana-Alsina, J. M. Baldasano, F. Rocadenbosch, A. Papayannis, S. Solomos, and C. G. Tzanis, 2016: Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygraA-CD campaign. Atmos. Res., 176–177, 185201, doi:10.1016/j.atmosres.2016.02.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and Coauthors, 2005: A bad air day in Houston. Bull. Amer. Meteor. Soc., 86, 657669, doi:10.1175/BAMS-86-5-657.

  • Bao, J.-W., S. A. Michelson, P. O. G. Persson, I. V. Djalalova, and J. M. Wilczak, 2008: Observed and WRF-simulated low-level winds in a high-ozone episode during the Central California Ozone Study. J. Appl. Meteor. Climatol., 47, 23722394, doi:10.1175/2008JAMC1822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, doi:10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burley, J. D., S. Theiss, A. Bytnerowicz, A. Gertler, S. Schilling, and B. Zielinska, 2015: Surface ozone in the Lake Tahoe basin. Atmos. Environ., 109, 351369, doi:10.1016/j.atmosenv.2015.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Correia, P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, doi:10.1175/WAF-D-12-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosman, E., and J. Horel, 2009: MODIS-derived surface temperature of the Great Salt Lake. Remote Sens. Environ., 113, 7381, doi:10.1016/j.rse.2008.08.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosman, E., and J. Horel, 2010: Sea and lake breezes: A review of numerical studies. Bound.-Layer Meteor., 137, 129, doi:10.1007/s10546-010-9517-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosman, E., and J. Horel, 2012: Idealized large-eddy simulations of sea and lake breezes: Sensitivity to lake diameter, heat flux and stability. Bound.-Layer Meteor., 144, 309328, doi:10.1007/s10546-012-9721-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosman, E., and J. Horel, 2016: Winter lake breezes near the Great Salt Lake. Bound.-Layer Meteor., 159, 439464, doi:10.1007/s10546-015-0117-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EPA, 2015: Implementation of the 2015 primary ozone NAAQS: Issues associated with background ozone. Environmental Protection Agency White Paper for Discussion, 27 pp. [Available online at https://www.epa.gov/sites/production/files/2016-03/documents/whitepaper-bgo3-final.pdf.]

  • Foley, T., E. A. Betterton, R. Jacko, and J. Hillery, 2011: Lake Michigan air quality: The 1994–2003 LADCO Aircraft Project (LAP). Atmos. Environ., 45, 31923202, doi:10.1016/j.atmosenv.2011.02.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaza, R., 1998: Mesoscale meteorology and high ozone in the northeast United States. J. Appl. Meteor. Climatol., 37, 961977, doi:10.1175/1520-0450(1998)037<0961:MMAHOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilliam, R. C., S. Raman, and D. D. S. Niyogi, 2004: Observational and numerical study on the influence of large-scale flow direction and coastline shape on sea-breeze evolution. Bound.-Layer Meteor., 111, 275300, doi:10.1023/B:BOUN.0000016494.99539.5a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, D. L., C. P. Loughner, M. Tzortziou, J. W. Stehr, K. E. Pickering, L. T. Marufu, and R. R. Dickerson, 2014: Higher surface ozone concentrations over the Chesapeake Bay than over the adjacent land: Observations and models from the DISCOVER-AQ and CBODAQ campaigns. Atmos. Environ., 84, 919, doi:10.1016/j.atmosenv.2013.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastie, D. R., and Coauthors, 1999: Observational evidence for the impact of the lake breeze circulation on ozone concentrations in southern Ontario. Atmos. Environ., 33, 323335, doi:10.1016/S1352-2310(98)00199-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayden, K. L., and Coauthors, 2011: Aircraft study of the impact of lake-breeze circulations on trace gases and particles during BAQS-Met 2007. Atmos. Chem. Phys., 11, 10 17310 192, doi:10.5194/acp-11-10173-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J., and Coauthors, 2002: MesoWest: Cooperative mesonets in the western United States. Bull. Amer. Meteor. Soc., 83, 211225, doi:10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J., E. Crosman, A. Jacques, B. Blaylock, S. Arens, A. Long, J. Sohl, and R. Martin, 2016: Summer ozone concentrations in the vicinity of the Great Salt Lake. Atmos. Sci. Lett., 17, 480486, doi:10.1002/asl.680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Neilson-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 18311844, doi:10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, M.-K., Y.-K. Kim, S. N. Oh, H. W. Lee, and C.-H. Kim, 2007: Identification and interpretation of representative ozone distributions in association with the sea breeze from different synoptic winds over the coastal urban area in Korea. J. Air Waste Manage. Assoc., 57, 14801488, doi:10.3155/1047-3289.57.12.1480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaffe, D., 2011: Relationship between surface and free tropospheric ozone in the western U.S. Environ. Sci. Technol., 45, 432438, doi:10.1021/es1028102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, H.-E., S.-H. Lee, and H.-W. Lee, 2013: Characteristics of sea breeze front development with various synoptic conditions and its impact on lower troposphere ozone formation. Adv. Atmos. Sci., 30, 14611478, doi:10.1007/s00376-013-2256-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., and J. Horel, 2015: Dynamically induced displacements of a persistent cold-air pool. Bound.-Layer Meteor., 154, 291316, doi:10.1007/s10546-014-9968-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lennartson, G. J., and M. D. Schwartz, 2002: The lake breeze–ground-level ozone connection in eastern Wisconsin: A climatological perspective. Int. J. Climatol., 22, 13471364, doi:10.1002/joc.802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, I., and Coauthors, 2010: Unraveling the complex local-scale flows influencing ozone patters in the southern Great Lakes of North America. Atmos. Chem. Phys., 10, 10 89510 915, doi:10.5194/acp-10-10895-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K., E. Sinsky, Y. Jia, M. M. Whitney, and J. Edson, 2016: Sensitivity of simulated sea breezes to initial conditions in complex coastal regions. Mon. Wea. Rev., 144, 12991320, doi:10.1175/MWR-D-15-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., and R. P. Turco, 1995: Air pollutant transport in a coastal environment—II. Three-dimensional simulations over Los Angeles basin. Atmos. Environ., 29, 14991518, doi:10.1016/1352-2310(95)00015-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludwig, F. L., J. Horel, and C. D. Whiteman, 2004: Using EOF analysis to identify important surface wind patterns in mountain valleys. J. Appl. Meteor., 43, 969983, doi:10.1175/1520-0450(2004)043<0969:UEATII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monks, P. S., and Coauthors, 2015: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys., 15, 88898973, doi:10.5194/acp-15-8889-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, I.-B., Y.-K. Kim, H. W. Lee, and C.-H. Kim, 2006: An observational and numerical study on the effects of the late sea breeze on ozone distributions in the Busan metropolitan area, Korea. Atmos. Environ., 40, 12841298, doi:10.1016/j.atmosenv.2005.10.049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porson, A., D. G. Steyn, and G. Schayes, 2007: Sea breeze scaling from numerical model simulations, part II: Interactions between the sea breeze and slope flows. Bound.-Layer Meteor., 122, 3141, doi:10.1007/s10546-006-9092-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sills, D. M. L., J. R. Brook, I. Levy, P. A. Makar, J. Zhang, and P. A. Taylor, 2011: Lake breezes in the southern Great Lakes region and their influence during BAQS-Met 2007. Atmos. Chem. Phys., 11, 79557973, doi:10.5194/acp-11-7955-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousa, S. I. V., M. C. M. Alvim-Ferraz, and F. G. Marins, 2013: Health effects of ozone focusing on childhood asthma: What is now known—A review from an epidemiological point of view. Chemosphere, 90, 20512058, doi:10.1016/j.chemosphere.2012.10.063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, R. M., and Coauthors, 2015: Bay breeze influence on surface ozone at Edgewood, MD during July 2011. J. Atmos. Chem., 72, 335353, doi:10.1007/s10874-012-9241-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, J. Q., C. D. Whiteman, W. J. Steenburgh, and X. Bian, 2002: A climatological study of thermally driven wind systems of the U.S. Intermountain West. Bull. Amer. Meteor. Soc., 83, 699708, doi:10.1175/1520-0477(2002)083<0699:ACSOTD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talbot, R., H. Mao, and B. Sive, 2005: Diurnal characteristics of surface level O3 and other important trace gases in New England. J. Geophys. Res., 110, D09307, doi:10.1029/2004JD005449.

    • Search Google Scholar
    • Export Citation
  • Wentworth, G. R., J. G. Murphy, and D. M. L. Sills, 2015: Impact of lake breezes on ozone and nitrogen oxides in the greater Toronto area. Atmos. Environ., 109, 5260, doi:10.1016/j.atmosenv.2015.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurtsbaugh, W., C. Miller, S. Null, P. Wilcock, M. Hahnenberger, and F. Howe, 2016: Impacts of water development on Great Salt Lake and the Wasatch Front. Watershed Sciences Faculty Publications, Paper 875, 9 pp. [Available online at http://digitalcommons.usu.edu/wats_facpub/875.]

  • Zumpfe, D. E., and J. Horel, 2007: Lake-breeze fronts in the Salt Lake valley. J Appl. Meteor. Climatol., 46, 196211, doi:10.1175/JAM2449.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 933 393 20
PDF Downloads 760 353 16

Impact of Lake Breezes on Summer Ozone Concentrations in the Salt Lake Valley

Brian K. BlaylockDepartment of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Brian K. Blaylock in
Current site
Google Scholar
PubMed
Close
,
John D. HorelDepartment of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by John D. Horel in
Current site
Google Scholar
PubMed
Close
, and
Erik T. CrosmanDepartment of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Erik T. Crosman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the late afternoon of 18 June 2015, ozone concentrations in advance of a strong lake-breeze front arising from the Great Salt Lake in northern Utah were ~20 ppb lower than those in its wake. The lake-breeze progression and ozone concentrations in the valley were monitored by an enhanced observation network that included automated weather stations, a nearby Terminal Doppler Weather Radar, state air quality measurement sites, and mobile platforms, including a news helicopter. Southerly flow opposing the lake breeze increased convergent frontogenesis and delayed the onset of its passage through the Salt Lake valley. Ozone concentrations were exceptionally high aloft at the lake-breeze frontal boundary. The progression of this lake breeze was simulated using the Weather Research and Forecasting Model at 1-km horizontal grid spacing over northern Utah. The model was initialized using hourly analyses from the High Resolution Rapid Refresh model. Errors in the underlying surface initialization were improved by adjusting the areal extent and surface temperature of the lake to observed lake conditions. An urban canopy parameterization is also included. The opposing southerly flow was weaker in the simulation than that observed such that the simulated lake-breeze front occurred too early. Continuous passive tracers initialized within and ahead of the lake breeze highlight the dispersion and transport of pollutants arising from the lake-breeze front. Tracers within the lake breeze are confined near the surface while tracers in advance of the front are lofted over it.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Brian Blaylock, brian.blaylock@utah.edu

Abstract

During the late afternoon of 18 June 2015, ozone concentrations in advance of a strong lake-breeze front arising from the Great Salt Lake in northern Utah were ~20 ppb lower than those in its wake. The lake-breeze progression and ozone concentrations in the valley were monitored by an enhanced observation network that included automated weather stations, a nearby Terminal Doppler Weather Radar, state air quality measurement sites, and mobile platforms, including a news helicopter. Southerly flow opposing the lake breeze increased convergent frontogenesis and delayed the onset of its passage through the Salt Lake valley. Ozone concentrations were exceptionally high aloft at the lake-breeze frontal boundary. The progression of this lake breeze was simulated using the Weather Research and Forecasting Model at 1-km horizontal grid spacing over northern Utah. The model was initialized using hourly analyses from the High Resolution Rapid Refresh model. Errors in the underlying surface initialization were improved by adjusting the areal extent and surface temperature of the lake to observed lake conditions. An urban canopy parameterization is also included. The opposing southerly flow was weaker in the simulation than that observed such that the simulated lake-breeze front occurred too early. Continuous passive tracers initialized within and ahead of the lake breeze highlight the dispersion and transport of pollutants arising from the lake-breeze front. Tracers within the lake breeze are confined near the surface while tracers in advance of the front are lofted over it.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Brian Blaylock, brian.blaylock@utah.edu
Save