• Barth, M. C., and Coauthors, 2015: The Deep Convective Clouds and Chemistry (DC3) field campaign. Bull. Amer. Meteor. Soc., 96, 12811309, doi:10.1175/BAMS-D-13-00290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, I. J., A. J. Prata, I. G. Watterson, and S. A. Young, 1992: Identification of the Mount Hudson volcanic cloud over SE Australia. Geophys. Res. Lett., 19, 12111214, doi:10.1029/92GL01122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, D., and Coauthors, 2015: Comprehensive mapping and characteristic regimes of aerosol effects on the formation and evolution of pyro-convective clouds. Atmos. Chem. Phys., 15, 10 32510 348, doi:10.5194/acp-15-10325-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., and A. A. Bailey, 2007: Assessment of aircraft icing potential and maximum icing altitude from geostationary meteorological satellite data. Wea. Forecasting, 22, 160174, doi:10.1175/WAF984.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., and R. Servranckx, 2003: Transport of forest fire smoke above the tropopause by supercell convection. Geophys. Res. Lett., 30, 1542, doi:10.1029/2002GL016820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., and Coauthors, 2000: Observations of boreal forest fire smoke in the stratosphere by POAM III, SAGE II, and lidar in 1998. Geophys. Res. Lett., 27, 14071410, doi:10.1029/1999GL011200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., R. Bevilacqua, R. Servranckx, J. Rosen, J. P. Thayer, J. Herman, and D. Larko, 2005: Pyro-cumulonimbus injection of smoke to the stratosphere: Observations and impact of a super blowup in northwestern Canada on 3–4 August 1998. J. Geophys. Res., 110, D08205, doi:10.1029/2004JD005350.

    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., A. Tupper, D. Rosenfeld, R. Servranckx, and R. McRae, 2006: Violent pyro-convective storm devastates Australia’s capital and pollutes the stratosphere. Geophys. Res. Lett., 33, L05815, doi:10.1029/2005GL025161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., O. Torres, D. Diner, D. Lindsey, B. Vant Hull, R. Servranckx, E. P. Shettle, and Z. Li, 2008a: Stratospheric impact of the Chisholm pyrocumulonimbus eruption: 1. Earth-viewing satellite perspective. J. Geophys. Res., 113, D08202, doi:10.1029/2007JD009153.

    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., and Coauthors, 2008b: Stratospheric impact of the Chisholm pyrocumulonimbus eruption: 2. Vertical profile perspective. J. Geophys. Res., 113, D08203, doi:10.1029/2007JD009147.

    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., D. Lindsey, R. Servranckx, G. Yue, T. Trickl, R. Sica, P. Doucet, and S. Godin-Beekmann, 2010: The untold story of pyrocumulonimbus. Bull. Amer. Meteor. Soc., 91, 11931209, doi:10.1175/2010BAMS3004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., R. H. D. McRae, J. J. Sharples, and G. P. Kablick III, 2012: Pyrocumulonimbus pair in Wollemi and Blue Mountains National Parks, 22 November 2006. Aust. Meteor. Oceanogr. J., 62, 117126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giglio, L., 2010: MODIS Collection 5 active fire product user’s guide, version 2.4. Science Systems and Applications, Inc., and University of Maryland Department of Geography, 61 pp. [Available online at http://www.fao.org/fileadmin/templates/gfims/docs/MODIS_Fire_Users_Guide_2.4.pdf.]

  • Giglio, L., J. Descloitres, C. O. Justice, and Y. J. Kaufman, 2003: An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ., 87, 273282, doi:10.1016/S0034-4257(03)00184-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, H., R. Esswein, J. Lopez, R. Bergstrom, A. Warnock, M. Follette-Cook, M. Fromm, and L. T. Iraci, 2010: A multi-decadal history of biomass burning plume heights identified using aerosol index measurements. Atmos. Chem. Phys., 10, 64616469, doi:10.5194/acp-10-6461-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, K., and L. K. Comfort, 2015: Dynamic decision processes in complex, high-risk operations: The Yarnell Hill Fire, June 30, 2013. Saf. Sci., 71, 3947, doi:10.1016/j.ssci.2014.04.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., D. Winker, M. Avery, M. Vaughan, G. Diskin, M. Deng, V. Mitev, and R. Matthey, 2014: Relationships between ice water content and volume extinction coefficient from in situ observations for temperatures from 0° to −86°C: Implications for spaceborne lidar retrievals. J. Appl. Meteor. Climatol., 53, 479505, doi:10.1175/JAMC-D-13-087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hillger, D. W., and T. J. Schmit, 2011: The GOES-15 science test: Imager and sounder radiance and product validations. NOAA Tech. Rep. NESDIS 141, 101 pp. [Available online at http://rammb.cira.colostate.edu/projects/goes-p/NOAA_Technical_Report_141_GOES-15_Science_Test.pdf.]

  • Kablick, G., M. Fromm, S. Miller, P. Partain, G. Nedoluha, D. Peterson, and L. Zhanqing, 2015: Biomass-burning aerosol effects on convective cloud properties and in the detrained UTLS environment: A pyroCb case study. Abstracts, 2015 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A34A-05.

  • Kaufman, Y. J., and Coauthors, 1998: Potential global fire monitoring from EOS-MODIS. J. Geophys. Res., 103, 32 21532 238, doi:10.1029/98JD01644.

  • Khain, A. P., D. Rosenfeld, and A. Pokrovsky, 2001: Simulating convective clouds with sustained supercooled liquid water down to 37.5°C using a spectral microphysics model. Geophys. Res. Lett., 28, 38873890, doi:10.1029/2000GL012662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., and C. B. Clements, 2016: Environmental controls on pyrocumulus and pyrocumulonimbus initiation and development. Atmos. Chem. Phys., 16, 40054022, doi:10.5194/acp-16-4005-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., and M. Fromm, 2008: Evidence of the cloud lifetime effect from wildfire-induced thunderstorms. Geophys. Res. Lett., 35, L22809, doi:10.1029/2008GL035680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., and L. Grasso, 2008: An effective radius retrieval for thick ice clouds using GOES. J. Appl. Meteor. Climatol., 47, 12221231, doi:10.1175/2007JAMC1612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., D. W. Hillger, L. Grasso, J. A. Knaff, and J. F. Dostalek, 2006: GOES climatology and analysis of thunderstorms with enhanced 3.9-μm reflectivity. Mon. Wea. Rev., 134, 23422353, doi:10.1175/MWR3211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luderer, G., J. Trentmann, and M. O. Andreae, 2009: A new look at the role of fire-released moisture on the dynamics of atmospheric pyro-convection. Int. J. Wildland Fire, 18, 554562, doi:10.1071/WF07035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melani, S., E. Cattani, V. Levizzani, M. Cervino, F. Torricella, and M. J. Costa, 2003a: Radiative effects of simulated cirrus clouds on top of a deep convective storm in METEOSAT second generation SEVIRI channels. Meteor. Atmos. Phys., 83, 109122, doi:10.1007/s00703-002-0554-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melani, S., E. Cattani, F. Torricella, and V. Levizzani, 2003b: Characterization of plumes on top of deep convective storm using AVHRR imagery and radiative transfer simulations. Atmos. Res., 67–68, 485499, doi:10.1016/S0169-8095(03)00061-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

  • Nauslar, N. J., M. L. Kaplan, J. Wallmann, and T. J. Brown, 2013: A forecast procedure for dry thunderstorms. J. Oper. Meteor., 1, 200214, doi:10.15191/nwajom.2013.0117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and J. A. Shaw, 2003: Coronas and iridescence in mountain wave clouds over northeastern Colorado. Bull. Amer. Meteor. Soc., 84, 13731386, doi:10.1175/BAMS-84-10-1373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paugam, R., M. Wooster, S. Freitas, and M. V. Martin, 2016: A review of approaches to estimate wildfire plume injection height within large-scale atmospheric chemical transport models. Atmos. Chem. Phys., 16, 907925, doi:10.5194/acp-16-907-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, D. A., J. Wang, C. Ichoku, E. Hyer, and V. Ambrosia, 2013: A sub-pixel-based calculation of fire radiative power from MODIS observations: 1 Algorithm development and initial assessment. Remote Sens. Environ., 129, 262279, doi:10.1016/j.rse.2012.10.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, D. A., E. J. Hyer, and J. Wang, 2014: Quantifying the potential for high-altitude smoke injection in the North American boreal forest using the standard MODIS fire products and subpixel-based methods. J. Geophys. Res. Atmos., 119, 34013419, doi:10.1002/2013JD021067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, D. A., E. J. Hyer, J. R. Campbell, M. D. Fromm, J. W. Hair, C. F. Butler, and M. A. Fenn, 2015: The 2013 Rim Fire: Implications for predicting extreme fire spread, pyroconvection, and smoke emissions. Bull. Amer. Meteor. Soc., 96, 229247, doi:10.1175/BAMS-D-14-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, D. A., E. J. Hyer, J. R. Campbell, J. E. Solbrig, and M. D. Fromm, 2017: A conceptual model for development of intense pyroconvection in western North America. Mon. Wea. Rev., doi:10.1175/MWR-D-16-0232.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, B. E., and M. A. Anaya, 2015: A wildfire-relevant climatology of the convective environment of the United States. Int. J. Wildland Fire, 24, 267275, doi:10.1071/WF13211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prata, A. J., 1989: Observations of volcanic ash clouds in the 10-12 μm window using AVHRR/2 data. Int. J. Remote Sens., 10, 751761, doi:10.1080/01431168908903916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prins, E. M., and W. P. Menzel, 1994: Trends in South American biomass burning detected with the GOES visible infrared spin scan radiometer atmospheric sounder from 1983 to 1991. J. Geophys. Res., 99, 16 71916 735, doi:10.1029/94JD01208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prins, E. M., J. M. Feltz, W. P. Menzel, and D. E. Ward, 1998: An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America. J. Geophys. Res., 103, 31 82131 835, doi:10.1029/98JD01720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reutter, P., and Coauthors, 2014: 3-D model simulations of dynamical and microphysical interactions in pyroconvective clouds under idealized conditions. Atmos. Chem. Phys., 14, 75737583, doi:10.5194/acp-14-7573-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., M. Fromm, J. Trentmann, G. Luderer, M. O. Andreae, and R. Servranckx, 2007: The Chisholm firestorm: Observed microstructure, precipitation and lightning activity of a pyro-cumulonimbus. Atmos. Chem. Phys., 7, 645659, doi:10.5194/acp-7-645-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and J. R. Campbell, 2001: A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part I: Macrophysical and synoptic properties. J. Atmos. Sci., 58, 481496, doi:10.1175/1520-0469(2001)058<0481:AMCCCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, E. O., R. F. Arduini, B. A. Wielicki, R. S. Stone, and S. C. Tsay, 1995: Considerations for modeling thin cirrus effects via brightness temperature differences. J. Appl. Meteor., 34, 447459, doi:10.1175/1520-0450-34.2.447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., E. M. Prins, A. J. Schreiner, and J. J. Gurka, 2001: Introducing the GOES-M Imager. Natl. Wea. Dig., 25, 2837.

  • Schroeder, W., I. Csiszar, L. Giglio, and C. C. Schmidt, 2010: On the use of fire radiative power, area, and temperature estimates to characterize biomass burning via moderate to coarse spatial resolution remote sensing data in the Brazilian Amazon. J. Geophys. Res., 115, D21121, doi:10.1029/2009JD013769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toon, O. B., and Coauthors, 2016: Planning, implementation, and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission. J. Geophys. Res. Atmos., 121, 49675009, doi:10.1002/2015JD024297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trentmann, J., and Coauthors, 2006: Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part I): Reference simulation. Atmos. Chem. Phys., 6, 52475260, doi:10.5194/acp-6-5247-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. International Geophysics Series, Vol. 92, Academic Press, 483 pp.

  • Wooster, M. J., G. Roberts, G. L. W. Perry, and Y. J. Kaufman, 2005: Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res., 110, D24311, doi:10.1029/2005JD006318.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 550 288 25
PDF Downloads 528 321 27

Detection and Inventory of Intense Pyroconvection in Western North America using GOES-15 Daytime Infrared Data

David A. PetersonNaval Research Laboratory, Monterey, California

Search for other papers by David A. Peterson in
Current site
Google Scholar
PubMed
Close
,
Michael D. FrommNaval Research Laboratory, Washington, D.C.

Search for other papers by Michael D. Fromm in
Current site
Google Scholar
PubMed
Close
,
Jeremy E. SolbrigCooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Jeremy E. Solbrig in
Current site
Google Scholar
PubMed
Close
,
Edward J. HyerNaval Research Laboratory, Monterey, California

Search for other papers by Edward J. Hyer in
Current site
Google Scholar
PubMed
Close
,
Melinda L. SurrattNaval Research Laboratory, Monterey, California

Search for other papers by Melinda L. Surratt in
Current site
Google Scholar
PubMed
Close
, and
James R. CampbellNaval Research Laboratory, Monterey, California

Search for other papers by James R. Campbell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Intense wildfires occasionally generate fire-triggered storms, known as pyrocumulonimbus (pyroCb), that can inject smoke particles and trace gases into the upper troposphere and lower stratosphere (UTLS). This study develops the first pyroCb detection algorithm using three infrared (IR) channels from the imager on board GOES-West (GOES-15). The algorithm first identifies deep convection near active fires via the longwave IR brightness temperature, distinguishing between midtropospheric and UTLS injections. During daytime, unique pyroCb microphysical properties are characterized by a medium-wave brightness temperature that is significantly larger than that in the longwave, allowing for separation of pyroCb from other deep convection. A cloud-opacity test reduces potential false detections. Application of this algorithm to 88 intense wildfires observed during the 2013 fire season in western North America resulted in successful detection of individual intense events, pyroCb embedded within traditional convection, and multiple, short-lived pulses of pyroconvective activity. Comparisons with a community inventory indicate that this algorithm captures the majority of pyroCb. The primary limitation is that pyroCb anvils can be small relative to GOES-West pixel size, especially in regions with large viewing angles. The algorithm is also sensitive to some false positives from traditional convection that either ingests smoke or exhibits extreme updraft velocities. A total of 26 pyroCb events are inventoried, including 31 individual pulses, all of which can inject smoke into the UTLS. Six of the inventoried intense pyroCb were not previously documented. Near-real-time application of this algorithm can be extended to other regions and to next-generation geostationary sensors, which offer significant advantages for pyroCb and fire detection.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: David Peterson, david.peterson@nrlmry.navy.mil

Abstract

Intense wildfires occasionally generate fire-triggered storms, known as pyrocumulonimbus (pyroCb), that can inject smoke particles and trace gases into the upper troposphere and lower stratosphere (UTLS). This study develops the first pyroCb detection algorithm using three infrared (IR) channels from the imager on board GOES-West (GOES-15). The algorithm first identifies deep convection near active fires via the longwave IR brightness temperature, distinguishing between midtropospheric and UTLS injections. During daytime, unique pyroCb microphysical properties are characterized by a medium-wave brightness temperature that is significantly larger than that in the longwave, allowing for separation of pyroCb from other deep convection. A cloud-opacity test reduces potential false detections. Application of this algorithm to 88 intense wildfires observed during the 2013 fire season in western North America resulted in successful detection of individual intense events, pyroCb embedded within traditional convection, and multiple, short-lived pulses of pyroconvective activity. Comparisons with a community inventory indicate that this algorithm captures the majority of pyroCb. The primary limitation is that pyroCb anvils can be small relative to GOES-West pixel size, especially in regions with large viewing angles. The algorithm is also sensitive to some false positives from traditional convection that either ingests smoke or exhibits extreme updraft velocities. A total of 26 pyroCb events are inventoried, including 31 individual pulses, all of which can inject smoke into the UTLS. Six of the inventoried intense pyroCb were not previously documented. Near-real-time application of this algorithm can be extended to other regions and to next-generation geostationary sensors, which offer significant advantages for pyroCb and fire detection.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: David Peterson, david.peterson@nrlmry.navy.mil
Save