• Bankert, R. L., C. Mitrescu, S. D. Miller, and R. H. Wade, 2009: Comparison of GOES cloud classification algorithms employing explicit and implicit physics. J. Appl. Meteor. Climatol., 48, 14111421, doi:10.1175/2009JAMC2103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bikos, D., and Coauthors, 2012: Synthetic satellite imagery for real-time high-resolution model evaluation. Wea. Forecasting, 27, 784795, doi:10.1175/WAF-D-11-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., and J.-P. Pinty, 2006: Evaluation of a cirrus parameterization with Meteosat Second Generation. Geophys. Res. Lett., 33, L03815, doi:10.1029/2005GL024725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2003: COAMPS version 3 model description—General theory and equations. Naval Research Laboratory Tech. Note NRL/PU/7500-03448, 141 pp. [Available online at http://www.nrlmry.navy.mil/coamps_docs/base/docs/COAMPS_2003.pdf.]

  • Chevallier, F., and G. Kelly, 2002: Model clouds as seen from space: Comparison with geostationary imagery in the 11-μm window channel. Mon. Wea. Rev., 130, 712722, doi:10.1175/1520-0493(2002)130<0712:MCASFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, R., J. A. Otkin, M. Xue, and F. Kong, 2014: Evaluating the performance of planetary boundary layer and cloud microphysical parameterization schemes in convection permitting ensemble forecasts using synthetic GOES-13 satellite observations. Mon. Wea. Rev., 142, 163182, doi:10.1175/MWR-D-13-00143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daley, R., and E. Barker, 2001: NAVDAS Source Book 2001: NRL Atmospheric Variational Data Assimilation System. Naval Research Laboratory Publ. NRL/PU/7530–01-441, 163 pp. [Available online at http://www.dtic.mil/dtic/tr/fulltext/u2/a396883.pdf.]

  • Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc., 102, 405418, doi:10.1002/qj.49710243210.

    • Search Google Scholar
    • Export Citation
  • Deeter, M., and K. F. Evans, 1998: A hybrid Eddington single-scatter radiative transfer model for computing radiances from thermally emitting atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 60, 635648, doi:10.1016/S0022-4073(97)00245-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleishauer, R. P., V. E. Larson, and T. H. Vonder Haar, 2002: Observed microphysical structure of midlevel, mixed-phase clouds. J. Atmos. Sci., 59, 17791804, doi:10.1175/1520-0469(2002)059<1779:OMSOMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frey, R., B. Baum, W. Menzel, S. Ackerman, C. Moeller, and J. Spinhirne, 1999: A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 slicing. J. Geophys. Res., 104, 24 54724 555, doi:10.1029/1999JD900796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., and T. Greenwald, 2004: Analysis of 10.7-μm brightness temperatures of a simulated thunderstorm with two-moment microphysics. Mon. Wea. Rev., 132, 815825, doi:10.1175/1520-0493(2004)132<0815:AOMBTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., M. Sengupta, J. F. Dostalek, R. Brummer, and M. DeMaria, 2008: Synthetic satellite imagery for current and future environmental satellites. Int. J. Remote Sens., 29, 43734384, doi:10.1080/01431160801891820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., M. Sengupta, and M. DeMaria, 2010: Comparison between observed and synthetic 6.5 and 10.7 μm GOES-12 imagery of thunderstorms that occurred on 8 May 2003. Int. J. Remote Sens., 31, 647663, doi:10.1080/01431160902894483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., D. Lindsey, K.-S. Sunny Lim, A. J. Clark, D. Bikos, and S. R. Dembek, 2014: Evaluation of and suggested improvements to the WSM6 microphysics in WRF-ARW using synthetic and observed GOES-13 imagery. Mon. Wea. Rev., 142, 36353650, doi:10.1175/MWR-D-14-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, doi:10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jankov, I., and Coauthors, 2011: An evaluation of five ARW-WRF microphysics schemes using synthetic GOES imagery for an atmospheric river event affecting the California coast. J. Hydrometeor., 12, 618633, doi:10.1175/2010JHM1282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Y., and Coauthors, 2014: The impact of ice phase cloud parameterizations on tropical cyclone prediction. Mon. Wea. Rev., 142, 606625, doi:10.1175/MWR-D-13-00058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46. Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Karlsson, K.-G., 1996: Validation of modeled cloudiness using satellite-estimated cloud climatologies. Tellus, 48A, 767785, doi:10.1034/j.1600-0870.1996.t01-1-00015.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, M., J. E. Nachamkin, and D. L. Westphal, 2009: On the improvement of COAMPS weather forecasts using an advanced radiative transfer model. Wea. Forecasting, 24, 286306, doi:10.1175/2008WAF2222137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, P., K. Finkele, P. Clark, and P. Mascart, 2003: Validation and intercomparison of three FASTEX cloud systems: Comparison with coarse-resolution simulations. Quart. J. Roy. Meteor. Soc., 129, 18411871, doi:10.1256/qj.01.113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, doi:10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., G. L. Stephens, C. K. Drummond, A. K. Heidinger, and P. T. Partain, 2000: A multisensor diagnostic satellite cloud property retrieval scheme. J. Geophys. Res., 105, 19 95519 971, doi:10.1029/2000JD900273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., P. Minnis, and M. M. Khaiyer, 2004: Comparison of cirrus optical depths derived from GOES 8 and surface measurements. J. Geophys. Res., 109, D15207, doi:10.1029/2003JD004390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2008: Near-real time cloud retrievals from operational and research meteorological satellites. Remote Sensing of Clouds and the Atmosphere XIII, R. H. Picard et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7107), doi:10.1117/12.800344.

    • Crossref
    • Export Citation
  • Mitrescu, C., S. Miller, and R. Wade, 2006: Cloud optical and microphysical properties derived from satellite data. 14th Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., P1.7. [Available online at https://ams.confex.com/ams/Annual2006/webprogram/Paper100515.html.]

  • Morcrette, J. J., 1991: Evaluation of model-generated cloudiness: Satellite-observed and model-generated diurnal variability of brightness temperatures. Mon. Wea. Rev., 119, 12051224, doi:10.1175/1520-0493(1991)119<1205:EOMGCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nachamkin, J. E., and W. R. Cotton, 2000: Interactions between a developing mesoscale convective system and its environment. Part II: Numerical simulation. Mon. Wea. Rev., 128, 12251244, doi:10.1175/1520-0493(2000)128<1225:IBADMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nachamkin, J. E., J. Schmidt, and C. Mitrescu, 2009: Verification of cloud forecasts over the eastern Pacific using passive satellite retrievals. Mon. Wea. Rev., 137, 34853500, doi:10.1175/2009MWR2853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci., 48, 18691884, doi:10.1175/1520-0469(1991)048<1869:TFGWIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and T. J. Greenwald, 2008: Comparison of WRF model-simulated and MODIS-derived cloud data. Mon. Wea. Rev., 136, 19571970, doi:10.1175/2007MWR2293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., T. J. Greenwald, J. Sieglaff, and H.-L. Huang, 2009: Validation of a large-scale simulated brightness temperature dataset using SEVIRI satellite observations. J. Appl. Meteor. Climatol., 48, 16131626, doi:10.1175/2009JAMC2142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandya, R. D., and D. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53, 29242951, doi:10.1175/1520-0469(1996)053<2924:TIOCGT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rikus, L., 1997: Application of a scheme for validating clouds in an operational global NWP model. Mon. Wea. Rev., 125, 16151637, doi:10.1175/1520-0493(1997)125<1615:AOASFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, doi:10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972, doi:10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, J. M., P. J. Flatau, and R. D. Yates, 2014: Convective cells in altocumulus observed with a high-resolution radar. J. Atmos. Sci., 71, 21302154, doi:10.1175/JAS-D-13-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., Jr., and Coauthors, 1996: Comparisons of cloud heights derived from satellite, aircraft, surface lidar and LITE data. Proc. Int. Radiation Symp., Fairbanks, AK, Int. Radiation Commission, 603–606.

  • Söhne, N., J.-P. Chaboureau, and F. Guichard, 2008: Verification of cloud cover forecast with satellite observation over West Africa. Mon. Wea. Rev., 136, 44214434, doi:10.1175/2008MWR2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Z., and L. Rikus, 2004: Validating model clouds and their optical properties using geostationary satellite imagery. Mon. Wea. Rev., 132, 20062020, doi:10.1175/1520-0493(2004)132<2006:VMCATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., M. Tewari, K. Ikeda, S. Tessendorf, C. Weeks, J. Otkin, and F. Kong, 2016: Explicitly-coupled cloud physics and radiation parameterizations and subsequent evaluation in WRF high-resolution convective forecasts. Atmos. Res., 168, 92104, doi:10.1016/j.atmosres.2015.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and C. Jakob, 2002: Evaluation of midlatitude cloud properties in a weather and a climate model: Dependence on dynamic regime and spatial resolution. J. Geophys. Res., 107, 4781, doi:10.1029/2002JD002259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15S02, doi:10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 236 118 3
PDF Downloads 154 68 2

Using Synthetic Brightness Temperatures to Address Uncertainties in Cloud-Top-Height Verification

Jason E. NachamkinNaval Research Laboratory, Monterey, California

Search for other papers by Jason E. Nachamkin in
Current site
Google Scholar
PubMed
Close
,
Yi JinNaval Research Laboratory, Monterey, California

Search for other papers by Yi Jin in
Current site
Google Scholar
PubMed
Close
,
Lewis D. GrassoCooperative Institute for Research in the Atmosphere, Fort Collins, Colorado

Search for other papers by Lewis D. Grasso in
Current site
Google Scholar
PubMed
Close
, and
Kim RichardsonNaval Research Laboratory, Monterey, California

Search for other papers by Kim Richardson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cloud-top verification is inherently difficult because of large uncertainties in the estimates of observed cloud-top height. Misplacement of cloud top associated with transmittance through optically thin cirrus is one of the most common problems. Forward radiative models permit a direct comparison of predicted and observed radiance, but uncertainties in the vertical position of clouds remain. In this work, synthetic brightness temperatures are compared with forecast cloud-top heights so as to investigate potential errors and develop filters to remove optically thin ice clouds. Results from a statistical analysis reveal that up to 50% of the clouds with brightness temperatures as high as 280 K are actually optically thin cirrus. The filters successfully removed most of the thin ice clouds, allowing for the diagnosis of very specific errors. The results indicate a strong negative bias in midtropospheric cloud cover in the model, as well as a lack of land-based convective cumuliform clouds. The model also predicted an area of persistent stratus over the North Atlantic Ocean that was not apparent in the observations. In contrast, high cloud tops associated with deep convection were well simulated, as were mesoscale areas of enhanced trade cumulus coverage in the Sargasso Sea.

Denotes content that is immediately available upon publication as open access.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jason Nachamkin, jason.nachamkin@nrlmry.navy.mil

Abstract

Cloud-top verification is inherently difficult because of large uncertainties in the estimates of observed cloud-top height. Misplacement of cloud top associated with transmittance through optically thin cirrus is one of the most common problems. Forward radiative models permit a direct comparison of predicted and observed radiance, but uncertainties in the vertical position of clouds remain. In this work, synthetic brightness temperatures are compared with forecast cloud-top heights so as to investigate potential errors and develop filters to remove optically thin ice clouds. Results from a statistical analysis reveal that up to 50% of the clouds with brightness temperatures as high as 280 K are actually optically thin cirrus. The filters successfully removed most of the thin ice clouds, allowing for the diagnosis of very specific errors. The results indicate a strong negative bias in midtropospheric cloud cover in the model, as well as a lack of land-based convective cumuliform clouds. The model also predicted an area of persistent stratus over the North Atlantic Ocean that was not apparent in the observations. In contrast, high cloud tops associated with deep convection were well simulated, as were mesoscale areas of enhanced trade cumulus coverage in the Sargasso Sea.

Denotes content that is immediately available upon publication as open access.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jason Nachamkin, jason.nachamkin@nrlmry.navy.mil
Save