• Aanensen, C. J. M., 1965: Gales in Yorkshire in February 1962. Geophys. Mem., 14, 144.

  • Ao, C. O., D. E. Waliser, S. K. Chan, J.-L. Li, B. Tian, F. Xie, and A. J. Mannucci, 2012: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res., 117, D16117, doi:10.1029/2012JD017598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., 1981: Lee waves. Meso-Scale Atmospheric Circulations. Academic Press, 25–79.

  • Baines, P. G., 1995: Topographic Effects in Stratified Fluids. Cambridge University Press, 488 pp.

  • Bingaman, J. B., 2005: Characteristics of the trade wind inversion over Hawaii. M.S. thesis, Dept. of Meteorology, University of Hawai‘i at Mānoa, 58 pp. [Available from Dept. of Atmospheric Sciences, 2525 Correa Rd., Honolulu, HI 96822.]

  • Burroughs, L. D., and R. N. Larson, 1979: Wave clouds in the vicinity of Oahu Island. Mon. Wea. Rev., 107, 608611, doi:10.1175/1520-0493(1979)107<0608:WCITVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caccia, J.-L., B. Benech, and V. Klaus, 1997: Space–time description of nonstationary trapped lee waves using ST radars, aircraft, and constant volume balloons during the PYREX experiment. J. Atmos. Sci., 54, 18211833, doi:10.1175/1520-0469(1997)054<1821:STDONT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, G., T. W. Giambelluca, D. E. Stevens, and T. A. Schroeder, 2007: Inversion variability in the Hawaiian trade wind regime. J. Climate, 20, 11451160, doi:10.1175/JCLI4033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlis, D. L., Y.-L. Chen, and V. R. Morris, 2010: Numerical simulations of island-scale airflow over Maui and the Maui vortex under summer trade wind conditions. Mon. Wea. Rev., 138, 27062736, doi:10.1175/2009MWR3236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y.-L., and J. Feng, 2001: Numerical simulations of airflow and cloud distributions over the windward side of the island of Hawaii. Part I: The effects of trade wind inversion. Mon. Wea. Rev., 129, 11171134, doi:10.1175/1520-0493(2001)129<1117:NSOAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. F. Mass, 1998: Windstorms along the western side of the Washington Cascade Mountains. Part I: A high-resolution observational and modeling study of the 12 February 1995 event. Mon. Wea. Rev., 126, 2852, doi:10.1175/1520-0493(1998)126<0028:WATWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colman, B. R., and C. F. Dierking, 1992: The Taku wind of southeast Alaska: Its identification and prediction. Wea. Forecasting, 7, 4964, doi:10.1175/1520-0434(1992)007<0049:TTWOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and D. R. Durran, 2002: The dynamics of mountain-wave-induced rotors. J. Atmos. Sci., 59, 186201, doi:10.1175/1520-0469(2002)059<0186:TDOMWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudis, J. J., 1972: The stability of a saturated, stably-stratified shear layer. J. Atmos. Sci., 29, 774778, doi:10.1175/1520-0469(1972)029<0774:TSOASS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1986: Mountain waves. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 472–492.

    • Crossref
    • Export Citation
  • Durran, D. R., 2003: Lee waves and mountain waves. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. Pyle, and J. A. Curry, Eds., Elsevier Science Ltd., 1161–1169. [Available online at http://www.atmos.washington.edu/2010Q1/536/2003AP_lee_waves.pdf.]

    • Crossref
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982a: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 21522158, doi:10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982b: The effects of moisture on trapped mountain lee waves. J. Atmos. Sci., 39, 24902506, doi:10.1175/1520-0469(1982)039<2490:TEOMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gjevik, B., and T. Marthinsen, 1978: Three-dimensional lee-wave pattern. Quart. J. Roy. Meteor. Soc., 104, 947957, doi:10.1002/qj.49710444207.

  • Gossard, E. E., and W. H. Hooke, 1975: Waves in the Atmosphere. Elsevier, 456 pp.

  • Hobbs, P. V., R. C. Easter, and A. B. Fraser, 1973: A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain: Part II. Microphysics. J. Atmos. Sci., 30, 813823, doi:10.1175/1520-0469(1973)030<0813:ATSOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmboe, J., and H. Klieforth, 1957: Investigations of mountain lee waves and airflow over the Sierra Nevada. Final Rep., Contract AF19(604)-728, Dept. of Meteorology, University of California, Los Angeles, 290 pp.

    • Crossref
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2000: Comments on “Development and evaluation of a convection scheme for use in climate models.” J. Atmos. Sci., 57, 3686, doi:10.1175/1520-0469(2000)057<3686:CODAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayawardena, I. M. S., Y.-L. Chen, A. J. Nash, and K. Kodama, 2012: A comparison of three prolonged periods of heavy rainfall over the Hawaiian Islands. J. Appl. Meteor. Climatol., 51, 722744, doi:10.1175/JAMC-D-11-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juvik, S. P., J. O. Juvik, and T. R. Paradise, Eds., 1998: The physical environment. Atlas of Hawai‘i. University of Hawai‘i Press, 35–100.

  • Klemp, J. B., and D. K. Lilly, 1975: The dynamics of wave-induced downslope winds. J. Atmos. Sci., 32, 320339, doi:10.1175/1520-0469(1975)032<0320:TDOWID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and D. K. Lilly, 1978: Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci., 35, 78107, doi:10.1175/1520-0469(1978)035<0078:NSOHMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lalas, D. P., and F. Einaudi, 1974: On the correct use of the wet adiabatic lapse rate in stability criteria of a saturated atmosphere. J. Appl. Meteor., 13, 318324, doi:10.1175/1520-0450(1974)013<0318:OTCUOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leopold, L. B., 1949: The interaction of trade wind and sea breeze, Hawaii. J. Meteor., 6, 312320, doi:10.1175/1520-0469(1949)006<0312:TIOTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35, 5977, doi:10.1175/1520-0469(1978)035<0059:ASDWAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., and J. B. Klemp, 1979: The effects of terrain shape on nonlinear hydrostatic mountain waves. J. Fluid Mech., 95, 241261, doi:10.1017/S0022112079001452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University Press, 630 pp.

    • Crossref
    • Export Citation
  • Lindsay, C. V., 1962: Mountain waves in the Appalachians. Mon. Wea. Rev., 90, 271276, doi:10.1175/1520-0493(1962)090<0271:MWITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiburger, M., D. S. Johnson, and C.-W. Chien, 1961: The Inversion over the Eastern North Pacific Ocean. Vol. 1, Studies of the Structure of the Atmosphere over the Eastern Pacific Ocean in Summer, University of California Press, 94 pp.

  • Nicholls, J. M., 1973: The airflow over mountains: Research 1958–1972. WMO Tech. Note 127, 73 pp.

  • Ogura, Y., 1963: The evolution of a moist convective element in a shallow, conditionally unstable atmosphere: A numerical calculation. J. Atmos. Sci., 20, 407424, doi:10.1175/1520-0469(1963)020<0407:TEOAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., and T. L. Clark, 1979: Evolution and stability of finite-amplitude mountain waves. Part II: Surface wave drag and severe downslope windstorms. J. Atmos. Sci., 36, 14981529, doi:10.1175/1520-0469(1979)036<1498:TEASOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Queney, P., 1948: The problem of air flow over mountains: A summary of theoretical studies. Bull. Amer. Meteor. Soc., 29, 1626.

  • Queney, P., G. Corby, N. Gerbier, H. Koschnieder, and H. Zierep, 1960: The airflow over mountains. WMO Tech. Note 34, 135 pp.

  • Ralph, F. M., P. J. Neiman, T. L. Keller, D. Levinson, and L. Fedor, 1997: Observations, simulations, and analysis of nonstationary trapped lee waves. J. Atmos. Sci., 54, 13081333, doi:10.1175/1520-0469(1997)054<1308:OSAAON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., P. Smolarkiewicz, and J. Warner, 1989: On the dynamics of Hawaiian cloud bands: Comparison of model results with observations and island climatology. J. Atmos. Sci., 46, 15891608, doi:10.1175/1520-0469(1989)046<1589:OTDOHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., N. Adams, and T. P. Lane, 1999: Radiosonde observations of partially trapped lee waves over Tasmania, Australia. J. Geophys. Res., 104, 16 71916 727, doi:10.1029/1999JD900038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E., T. Black, B. Ferrier, Y. Lin, D. Parrish, and G. DiMego, 2001: Changes to the NCEP meso Eta analysis and forecast system: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. NCEP. [Available online at http://www.emc.ncep.noaa.gov/mmb/mmbpll/eta12tpb/.]

  • Sachsperger, J., S. Serafin, and V. Grubišić, 2015: Lee waves on the boundary-layer inversion and their dependence on free-atmospheric stability. Front. Earth Sci., 3, 70, doi:10.3389/feart.2015.00070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawyer, J. S., 1962: Gravity waves in the atmosphere as a three-dimensional problem. Quart. J. Roy. Meteor. Soc., 88, 412425, doi:10.1002/qj.49708837805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., and R. B. Smith, 1993: Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. J. Atmos. Sci., 50, 13731400, doi:10.1175/1520-0469(1993)050<1373:SWFPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, T., 1993: Climate controls. Prevailing Trade Winds: Weather and Climate in Hawai‘i, M. Sanderson, Ed., University of Hawaii Press, 12–36.

  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, doi:10.1002/qj.49707532308.

  • Sharman, R. D., and M. G. Wurtele, 1983: Ship waves and lee waves. J. Atmos. Sci., 40, 396427, doi:10.1175/1520-0469(1983)040<0396:SWALW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simard, A., and W. R. Peltier, 1982: Ship waves in the lee of isolated topography. J. Atmos. Sci., 39, 587609, doi:10.1175/1520-0469(1982)039<0587:SWITLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1977: The steepening of hydrostatic mountain waves. J. Atmos. Sci., 34, 16341654, doi:10.1175/1520-0469(1977)034<1634:TSOHMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87230, doi:10.1016/S0065-2687(08)60262-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci., 42, 25972603, doi:10.1175/1520-0469(1985)042<2597:OSDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Comment on “Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices.” J. Atmos. Sci., 46, 36113613, doi:10.1175/1520-0469(1989)046<3611:COFNFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2002: Stratified flow over topography. Environmental Stratified Flows, R. Grimshaw, Ed., Kluwer, 119–159.

    • Crossref
    • Export Citation
  • Smith, R. B., and V. Grubišić, 1993: Aerial observations of Hawaii’s wake. J. Atmos. Sci., 50, 37283750, doi:10.1175/1520-0469(1993)050<3728:AOOHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., R. M. Rasmussen, and T. L. Clark, 1988: On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45, 18721905, doi:10.1175/1520-0469(1988)045<1872:OTDOHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Starr, J. R., and K. A. Browning, 1972: Observations of lee waves by high-power radar. Quart. J. Roy. Meteor. Soc., 98, 7385, doi:10.1002/qj.49709841507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takeda, T., 1971: Numerical simulations of a precipitating convective cloud: The formation of a “long-lasting” cloud. J. Atmos. Sci., 28, 350376, doi:10.1175/1520-0469(1971)028<0350:NSOAPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., J. L. Argaín, and P. M. A. Miranda, 2013: Orographic drag associated with lee waves trapped at an inversion. J. Atmos. Sci., 70, 29302947, doi:10.1175/JAS-D-12-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tu, C.-C., and Y.-L. Chen, 2011: Favorable conditions for the development of a heavy rainfall event over Oahu during the 2006 wet period. Wea. Forecasting, 26, 280300, doi:10.1175/2010WAF2222449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vachon, P. W., O. M. Johannessen, and J. A. Johannessen, 1994: An ERS 1 synthetic aperture radar image of atmospheric lee waves. J. Geophys. Res., 99, 22 48322 490, doi:10.1029/94JC01392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Nguyen, H., Y.-L. Chen, and F. Fujioka, 2010: Numerical simulations of island effects on airflow and weather during the summer over the island of Oahu. Mon. Wea. Rev., 138, 22532280, doi:10.1175/2009MWR3203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., 2004: Inversion effects on mountain lee waves. Quart. J. Roy. Meteor. Soc., 130, 17231748, doi:10.1256/qj.03.63.

  • Vosper, S. B., and S. D. Mobbs, 1996: Lee waves over the English Lake District. Quart. J. Roy. Meteor. Soc., 122, 12831305, doi:10.1002/qj.49712253404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winning, T. E., Jr., Y.-L. Chen, and F. Xie, 2017: Estimation of the marine boundary layer height over the central North Pacific using GPS radio occultation. Atmos. Res., 183, 362370, doi:10.1016/j.atmosres.2016.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worthley, L. E., 1967: Synoptic climatology of Hawaii. Weather phenomena in Hawaii, Part I. Hawaii Institute of Geophysics Rep. 67-9, 40 pp. [Available from Dept. of Meteorology, University of Hawai‘i at Mānoa, Honolulu, HI 96822.]

  • Wurtele, M. G., R. D. Sharman, and A. Datta, 1996: Atmospheric lee waves. Annu. Rev. Fluid Mech., 28, 429476, doi:10.1146/annurev.fl.28.010196.002241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., D. L. Wu, C. O. Ao, A. J. Mannucci, and E. R. Kursinski, 2012: Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean. Atmos. Chem. Phys., 12, 903918, doi:10.5194/acp-12-903-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., and Y.-L. Chen, 2008: Effects of terrain heights and sizes on island-scale circulations and rainfall for the island of Hawaii during HaRP. Mon. Wea. Rev., 136, 120146, doi:10.1175/2007MWR1984.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., Y.-L. Chen, and F. M. Fujioka, 2005: Numerical simulations of the island-induced circulations over the island of Hawaii during HaRP. Mon. Wea. Rev., 133, 36933713, doi:10.1175/MWR3053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., Y.-L. Chen, and F. M. Fujioka, 2008: Effects of trade-wind strength and direction on the leeside circulations and rainfall of the island of Hawaii. Mon. Wea. Rev., 136, 47994818, doi:10.1175/2008MWR2365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y.-L. Chen, S.-Y. Hong, H.-M. H. Juang, and K. Kodama, 2005a: Validation of the coupled NCEP Mesoscale Spectral Model and an advanced land surface model over the Hawaiian Islands. Part I: Summer trade wind conditions and a heavy rainfall event. Wea. Forecasting, 20, 847872, doi:10.1175/WAF891.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y.-L. Chen, and K. Kodama, 2005b: Validation of the coupled NCEP Mesoscale Spectral Model and an advanced land surface model over the Hawaiian Islands. Part II : A high wind event. Wea. Forecasting, 20, 873895, doi:10.1175/WAF892.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 283 95 7
PDF Downloads 263 117 6

Numerical Simulations of Two Trapped Mountain Lee Waves Downstream of Oahu

Liye LiDepartment of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Honolulu, Hawaii

Search for other papers by Liye Li in
Current site
Google Scholar
PubMed
Close
and
Yi-Leng ChenDepartment of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Honolulu, Hawaii

Search for other papers by Yi-Leng Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two trapped lee-wave events dominated by the transverse mode downstream of the island of Oahu in Hawaii—27 January 2010 and 24 January 2003—are simulated using the Weather Research Forecasting (WRF) Model with a horizontal grid size of 1 km in conjunction with the analyses of soundings, weather maps, and satellite images. The common factors for the occurrences of these transverse trapped mountain-wave events are 1) Froude number [Fr = U/(Nh)] > 1, where U is the upstream speed of the cross-barrier flow, N is stability, and h is the mountain height; 2) insufficient convective available potential energy for the air parcel to become positively buoyant after being lifted to the top of the stable trade wind inversion layer; and 3) increasing cross-barrier wind speed with respect to height through the stable inversion layer, satisfying Scorer’s criteria between the inversion layer and the layer aloft. Within the inversion layer, where the Scorer parameter has a maximum, the wave amplitudes are the greatest. The two trapped mountain waves in winter occurred under strong prefrontal stably stratified southwesterly flow. On the other islands in Hawaii, where the mountaintops are below the base of the inversion, transverse trapped lee waves can occur under similar large-scale settings if the mountain height is lower than U/N. The high-spatial-and-temporal-resolution WRF Model successfully simulates the onset, development, and dissipation of these two events. Sensitivity tests for the 27 January 2010 case are performed with reduced relative humidity (RH). With a lower RH and less-significant latent heating, trapped lee waves have smaller amplitudes and shorter wavelengths.

School of Ocean and Earth Science and Technology Contribution Number 9886.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Yi-Leng Chen, yileng@hawaii.edu

Abstract

Two trapped lee-wave events dominated by the transverse mode downstream of the island of Oahu in Hawaii—27 January 2010 and 24 January 2003—are simulated using the Weather Research Forecasting (WRF) Model with a horizontal grid size of 1 km in conjunction with the analyses of soundings, weather maps, and satellite images. The common factors for the occurrences of these transverse trapped mountain-wave events are 1) Froude number [Fr = U/(Nh)] > 1, where U is the upstream speed of the cross-barrier flow, N is stability, and h is the mountain height; 2) insufficient convective available potential energy for the air parcel to become positively buoyant after being lifted to the top of the stable trade wind inversion layer; and 3) increasing cross-barrier wind speed with respect to height through the stable inversion layer, satisfying Scorer’s criteria between the inversion layer and the layer aloft. Within the inversion layer, where the Scorer parameter has a maximum, the wave amplitudes are the greatest. The two trapped mountain waves in winter occurred under strong prefrontal stably stratified southwesterly flow. On the other islands in Hawaii, where the mountaintops are below the base of the inversion, transverse trapped lee waves can occur under similar large-scale settings if the mountain height is lower than U/N. The high-spatial-and-temporal-resolution WRF Model successfully simulates the onset, development, and dissipation of these two events. Sensitivity tests for the 27 January 2010 case are performed with reduced relative humidity (RH). With a lower RH and less-significant latent heating, trapped lee waves have smaller amplitudes and shorter wavelengths.

School of Ocean and Earth Science and Technology Contribution Number 9886.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Yi-Leng Chen, yileng@hawaii.edu
Save