• Boe, B. A., J. A. Heimbach, T. W. Krauss, L. Xue, X. Chu, and J. T. McPartland, 2014: The dispersion of silver iodide particles from ground-based generators over complex terrain. Part I: Observations with acoustic ice nucleus counters. J. Appl. Meteor. Climatol., 53, 13251341, doi:10.1175/JAMC-D-13-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., 1999: A review of cloud seeding experiments to enhance precipitation and some new prospects. Bull. Amer. Meteor. Soc., 80, 805820, doi:10.1175/1520-0477(1999)080<0805:AROCSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., T. L. Clark, and W. D. Hall, 1995: The dispersion of tracer plumes in mountainous regions of central Arizona: Comparisons between observations and modeling results. J. Appl. Meteor., 34, 971988, doi:10.1175/1520-0450(1995)034<0971:TDOTPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., and H. Xiao, 2010: Silver iodide seeding impact on the microphysics and dynamics of convective clouds in the high plains. Atmos. Res., 96, 186207, doi:10.1016/j.atmosres.2009.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X., L. Xue, B. Geerts, R. Rasmussen, and D. Breed, 2014: A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part I: Observations and model validations. J. Appl. Meteor. Climatol., 53, 22642286, doi:10.1175/JAMC-D-14-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X., B. Geerts, L. Xue, and B. Pokharel, 2017a: A case study of cloud radar observations and large eddy simulations of a shallow stratiform orographic cloud, and the impact of glaciogenic seeding. J. Appl. Meteor. Climatol., 56, 12851304, doi:10.1175/JAMC-D-16-0364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X., B. Geerts, L. Xue, and R. Rasmussen, 2017b: Large-eddy simulations of the impact of ground-based glaciogenic seeding on shallow orographic convection: A case study. J. Appl. Meteor. Climatol., 56, 6984, doi:10.1175/JAMC-D-16-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 21, Amer. Meteor. Soc., 29–32.

    • Crossref
    • Export Citation
  • Ćurić, M., D. Janc, and V. Vučković, 2007: Cloud seeding impact on precipitation as revealed by cloud-resolving mesoscale model. Meteor. Atmos. Phys., 95, 179193, doi:10.1007/s00703-006-0202-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1995: Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols. Atmos. Res., 38, 6369, doi:10.1016/0169-8095(94)00088-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demoz, B. B., R. Zhang, and R. Pitter, 1993: An analysis of Sierra Nevada winter orographic storms: Ground-based ice-crystal observation. J. Appl. Meteor., 32, 18261836, doi:10.1175/1520-0450(1993)032<1826:AAOSNW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., A. McComiskey, D. Rosenfeld, and A. Sorooshian, 2013: On the relationship between cloud contact time and precipitation susceptibility to aerosol. J. Geophys. Res. Atmos., 118, 10 54410 554, doi:10.1002/jgrd.50819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, Y. Yang, R. Rasmussen, and D. Breed, 2010: An airborne profiling radar study of the impact of glaciogenic cloud seeding on snowfall from winter orographic clouds. J. Atmos. Sci., 67, 32863302, doi:10.1175/2010JAS3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2013: The AgI Seeding Cloud Impact Investigation (ASCII) campaign 2012: Overview and preliminary results. J. Wea. Modif., 45, 2443.

    • Search Google Scholar
    • Export Citation
  • Geresdi, I., 1998: Idealized simulation of the Colorado hailstorm case: Comparison of bulk and detailed microphysics. Atmos. Res., 45, 237252, doi:10.1016/S0169-8095(97)00079-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geresdi, I., and R. Rasmussen, 2005: Freezing drizzle formation in stably stratified layer clouds. Part II: The role of giant nuclei and aerosol particle size distribution. J. Atmos. Sci., 62, 20372057, doi:10.1175/JAS3452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geresdi, I., N. Sarkadi, and G. Thompson, 2014: Effect of the accretion by water drops on the melting of snow. Atmos. Res., 149, 96110, doi:10.1016/j.atmosres.2014.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Givati, A., and D. Rosenfeld, 2005: Separation between cloud-seeding and air-pollution effects. J. Appl. Meteor., 44, 12981314, doi:10.1175/JAM2276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, X., G. Zheng, and D. Jin, 2006: A numerical comparison study of cloud seeding by silver iodide and liquid carbon dioxide. Atmos. Res., 79, 183206, doi:10.1016/j.atmosres.2005.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, doi:10.1038/249026a0.

  • Hashimoto, A., S. Satake, T. Kato, and M. Murakami, 2008: Numerical simulation of the ground-based AgI seeding (in Japanese). Proc. 2008 Autumn Meeting of the MSJ, Sendai, Japan, Meteorological Society of Japan, B359.

  • Heggli, M. F., and R. M. Rauber, 1988: The characteristics and evolution of supercooled liquid water in wintertime storms over the Sierra Nevada: A summary of microwave radiometric measurements during the Sierra Cooperative Pilot Project. J. Appl. Meteor., 27, 9891015, doi:10.1175/1520-0450(1988)027<0989:TCAEOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heggli, M. F., L. Vardiman, R. E. Stewart, and A. Huggins, 1983: Supercooled liquid water and ice crystal distributions within Sierra Nevada winter storms. J. Climate Appl. Meteor., 22, 18751886, doi:10.1175/1520-0450(1983)022<1875:SLWAIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, G. E., and D. S. Woffinden, 1980: A balloonborne instrument for the measurement of the vertical profiles of supercooled liquid water concentration. J. Appl. Meteor., 19, 12851292, doi:10.1175/1520-0450(1980)019<1285:ABIFTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1975: The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seeding. Part I: Natural conditions. J. Appl. Meteor., 14, 783804, doi:10.1175/1520-0450(1975)014<0783:TNOWCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holroyd, E. W., J. T. McPartland, and A. B. Super, 1988: Observations of silver iodide plumes over the Grand Mesa of Colorado. J. Appl. Meteor., 27, 11251151, doi:10.1175/1520-0450(1988)027<1125:OOSIPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., R. M. Rasmussen, W. D. Hall, and G. Thompson, 2007: Observations of freezing drizzle in extratropical cyclonic storms during IMPROVE-2. J. Atmos. Sci., 64, 30163043, doi:10.1175/JAS3999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016a: Dynamics of cloud-top generating cells in winter cyclones. Part I: Idealized simulations in the context of field observations. J. Atmos. Sci., 73, 15071527, doi:10.1175/JAS-D-15-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016b: Dynamics of cloud-top generating cells in winter cyclones. Part II: Radiative and instability forcing. J. Atmos. Sci., 73, 15291553, doi:10.1175/JAS-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, C. K., S. S. Yum, and Y. S. Park, 2016: A numerical study of winter orographic seeding experiments in Korea using the Weather Research and Forecasting Model. Meteor. Atmos. Phys., 128, 2338, doi:10.1007/s00703-015-0402-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 16361658, doi:10.1175/JAMC-D-13-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, K., M. Murakami, M. Hoshimoto, N. Orikasa, Y. Yamada, H. Mizuno, K. Hamazu, and H. Watanabe, 2004: The characteristics and evolution of orographic snow clouds under weak cold advection. Mon. Wea. Rev., 132, 174191, doi:10.1175/1520-0493(2004)132<0174:TCAEOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, K., and Coauthors, 2005: Observations of quasi-stationary and shallow orographic snow clouds: Spatial distributions of supercooled liquid water and snow particles. Mon. Wea. Rev., 133, 743751, doi:10.1175/MWR2874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and R. L. Pitter, 1997: Numerical comparison of two ice crystal formation mechanisms on snowfall enhancement from ground-based aerosol generators. J. Appl. Meteor., 36, 7085, doi:10.1175/1520-0450(1997)036<0070:NCOTIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, A. B., and E. J. Carter, 1996: Australian winter mountain storm clouds: Precipitation augmentation potential. J. Appl. Meteor., 35, 14571464, doi:10.1175/1520-0450(1996)035<1457:AWMSCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M. L., A. Sorooshian, H. H. Jonsson, G. Feingold, R. C. Flagan, and J. H. Seinfeld, 2009: Marine stratocumulus aerosol-cloud relationships in the MASE-II experiment: Precipitation susceptibility in eastern Pacific marine stratocumulus. J. Geophys. Res., 114, D24203, doi:10.1029/2009JD012774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, B., A. Khain, D. Rosenfeld, and W. L. Woodley, 2007: Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res., 112, D10225, doi:10.1029/2006JD007537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterization in an explicit cloud model. J. Appl. Meteor., 31, 708721, doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1995: A comparison of seeded and nonseeded orographic cloud simulations with an explicit cloud model. J. Appl. Meteor., 34, 834846, doi:10.1175/1520-0450(1995)034<0834:ACOSAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., and U. Lohmann, 2008: Sensitivity studies of the role of aerosols in warm-phase orographic precipitation in different dynamical flow regimes. J. Atmos. Sci., 65, 25222542, doi:10.1175/2007JAS2492.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., T. Hashino, L. Xue, A. Teller, U. Lohmann, R. M. Rasmussen, I. Geresdi, and Z. Pan, 2010: Intercomparison of aerosol–cloud–precipitation interactions in stratiform orographic mixed-phase clouds. Atmos. Chem. Phys., 10, 81738196, doi:10.5194/acp-10-8173-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokharel, B., B. Geerts, and X. Jing, 2015: The impact of ground-based glaciogenic seeding on clouds and precipitation over mountains: A case study of a shallow orographic cloud with large supercooled droplets. J. Geophys. Res. Atmos., 120, 60566079, doi:10.1002/2014JD022693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and G. Vali, 1983: Observations of liquid water in orographic clouds over Elk Mountain. J. Atmos. Sci., 40, 13001312, doi:10.1175/1520-0469(1983)040<1300:OOLWIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 2004: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic Publishers, 975 pp.

  • Rasmussen, R. M., I. Geresdi, G. Thompson, K. Menning, and E. Karplus, 2002: Freezing drizzle formation in stably stratified layer clouds: The role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation. J. Atmos. Sci., 59, 837860, doi:10.1175/1520-0469(2002)059<0837:FDFISS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, doi:10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and L. O. Grant, 1986: The characteristics and distribution of cloud water over the mountains of northern Colorado during wintertime storms. Part II: Spatial distribution and microphysical characteristics. J. Climate Appl. Meteor., 25, 489504, doi:10.1175/1520-0450(1986)025<0489:TCADOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., D. Feng, L. O. Grant, and J. B. Snider, 1986: The characteristics and distribution of cloud water over the mountains of northern Colorado during wintertime storms. Part I: Temporal variations. J. Climate Appl. Meteor., 25, 468488, doi:10.1175/1520-0450(1986)025<0468:TCADOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., 1979: The onset and early growth of snow crystals by accretion of droplets. J. Atmos. Sci., 36, 870881, doi:10.1175/1520-0469(1979)036<0870:TOAEGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reisin, T., Z. Levin, and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci., 53, 497519, doi:10.1175/1520-0469(1996)053<0497:RPICCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, doi:10.1146/annurev.earth.33.092203.122541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., W. R. Cotton, D. Lowenthal, R. D. Borys, and M. A. Wetzel, 2009: Influence of cloud condensation nuclei on orographic snowfall. J. Appl. Meteor. Climatol., 48, 903922, doi:10.1175/2008JAMC1989.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., W. R. Cotton, and J. D. Fuller, 2011: The cumulative impact of cloud droplet nucleating aerosols on orographic snowfall in Colorado. J. Appl. Meteor. Climatol., 50, 604625, doi:10.1175/2010JAMC2594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., R. M. Rauber, and J. B. Snider, 1986: Multiple remote sensor observations of supercooled liquid water in a winter storm at Beaver, Utah. J. Climate Appl. Meteor., 25, 825834, doi:10.1175/1520-0450(1986)025<0825:MRSOOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., A. W. Huggins, A. B. Long, J. B. Snider, and R. J. Meitín, 1990: Investigations of a winter mountain storm in Utah. Part II: Mesoscale structure, supercooled liquid water development, and precipitation processes. J. Atmos. Sci., 47, 13231350, doi:10.1175/1520-0469(1990)047<1323:IOAWMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., J. Klemp, J. Dudhia, D. Gill, D. Barker, M. Duda, X. Y. Huang, and J. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Sorooshian, A., G. Feingold, M. D. Lebsock, H. Jiang, and G. L. Stephens, 2009: On the precipitation susceptibility of clouds to aerosol perturbations. Geophys. Res. Lett., 36, L13803, doi:10.1029/2009GL038993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., X. Li, and M.-J. Yang, 2007: On the definition of precipitation efficiency. J. Atmos. Sci., 64, 45064513, doi:10.1175/2007JAS2332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Super, A. B., 1974: Silver iodide plume characteristics over the Bridger Mountain Range, Montana. J. Appl. Meteor., 13, 6270, doi:10.1175/1520-0450(1974)013<0062:SIPCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Super, A. B., and B. A. Boe, 1988: Microphysical effects of wintertime cloud seeding with silver iodide over Rocky Mountains. Part III: Observations over the Grand Mesa, Colorado. J. Appl. Meteor., 27, 11661182, doi:10.1175/1520-0450(1988)027<1166:MEOWCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teller, A., L. Xue, and Z. Levin, 2012: The effects of mineral dust particles, aerosol regeneration and ice nucleation parameterizations on clouds and precipitation. Atmos. Chem. Phys., 12, 93039320, doi:10.5194/acp-12-9303-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terai, C. R., R. Wood, D. C. Leon, and P. Zuidema, 2012: Does precipitation susceptibility vary with increasing cloud thickness in marine stratocumulus? Atmos. Chem. Phys., 12, 45674583, doi:10.5194/acp-12-4567-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., 1947: The nucleation of ice formation by silver iodide. J. Appl. Phys., 18, 593595, doi:10.1063/1.1697813.

  • Wyoming Water Development Commission, 2014: The Wyoming Weather Modification Pilot Program level II study. Wyoming Water Development Commission Rep., 15 pp. [Available online at http://wwdc.state.wy.us/weathermod/WYWeatherModPilotProgramExecSummary.html.]

  • Xue, L., A. Teller, R. Rasmussen, I. Geresdi, and Z. Pan, 2010: Effects of aerosol solubility and regeneration on warm-phase orographic clouds and precipitation simulated by a detailed bin microphysical scheme. J. Atmos. Sci., 67, 33363354, doi:10.1175/2010JAS3511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., A. Teller, R. Rasmussen, I. Geresdi, Z. Pan, and X. Liu, 2012: Effects of aerosol solubility and regeneration on mixed-phase orographic clouds and precipitation. J. Atmos. Sci., 69, 19942010, doi:10.1175/JAS-D-11-098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2013a: Implementation of a silver iodide cloud-seeding parameterization in WRF. Part I: Model description and idealized 2D sensitivity test. J. Appl. Meteor. Climatol., 52, 14331457, doi:10.1175/JAMC-D-12-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., S. A. Tessendorf, E. Nelson, R. Rasmussen, D. Breed, S. Parkinson, P. Holbrook, and D. Blestrud, 2013b: Implementation of a silver iodide cloud-seeding parameterization in WRF. Part II: 3D simulations of actual seeding events and sensitivity test. J. Appl. Meteor. Climatol., 52, 14581476, doi:10.1175/JAMC-D-12-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., X. Chu, R. Rasmussen, D. Breed, B. Boe, and B. Geerts, 2014: The dispersion of silver iodide particles from ground-based generators over complex terrain. Part II: WRF large-eddy simulations versus observations. J. Appl. Meteor. Climatol., 53, 13421361, doi:10.1175/JAMC-D-13-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., X. Chu, R. Rasmussen, D. Breed, and B. Geerts, 2016a: A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation: Part II: AgI dispersion and seeding signals simulated by WRF. J. Appl. Meteor. Climatol., 55, 445464, doi:10.1175/JAMC-D-15-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2017: WRF large-eddy simulations of chemical tracer deposition and seeding effect over complex terrain from ground- and aircraft-based AgI generators. Atmos. Res., 190, 89103, doi:10.1016/j.atmosres.2017.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Y., Z. Levin, T. Reisin, and S. Tzivion, 2000: Seeding convective clouds with hygroscopic flares: Numerical simulations using a cloud model with detailed microphysics. J. Appl. Meteor., 39, 14601472, doi:10.1175/1520-0450(2000)039<1460:SCCWHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 460 118 12
PDF Downloads 356 99 2

Evaluation of Orographic Cloud Seeding Using a Bin Microphysics Scheme: Two-Dimensional Approach

István GeresdiFaculty of Science, University of Pécs, Pécs, Hungary

Search for other papers by István Geresdi in
Current site
Google Scholar
PubMed
Close
,
Lulin XueNational Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Lulin Xue in
Current site
Google Scholar
PubMed
Close
, and
Roy RasmussenNational Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Roy Rasmussen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new version of a bin microphysical scheme implemented into the Weather Research and Forecasting (WRF) Model was used to study the effect of glaciogenic seeding on precipitation formation in orographic clouds. The tracking of silver iodide (AgI) particles inside of water drops allows the proper simulation of the immersion nucleation. The ice formations by deposition, condensational freezing, and contact nucleation of AgI particles are also simulated in the scheme. Cloud formation—both stably stratified and convective—and the spread of AgI particles were simulated by idealized flow over a two-dimensional (2D) bell-shaped mountain. The results of numerical experiments show the following: (i) Only the airborne seeding enhances precipitation in stably stratified layer clouds. Seeding can reduce or enhance precipitation in convective clouds. AgI seeding can significantly affect the spatial distribution of the surface precipitation in orographic clouds. (ii) The positive seeding effect is primarily due to additional diffusional growth of AgI-nucleated ice crystals in layer clouds. In convective clouds, seeding-induced changes of both diffusion and riming processes determine the seeding effect. (iii) The seeding effect is inversely related to the natural precipitation efficiency. (iv) Bulk seeding parameterization is adequate to simulate AgI seeding impacts on wintertime orographic clouds. More uncertainties of ground-seeding effects are found between bulk and bin simulations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author: Lulin Xue, xuel@ucar.edu

Abstract

A new version of a bin microphysical scheme implemented into the Weather Research and Forecasting (WRF) Model was used to study the effect of glaciogenic seeding on precipitation formation in orographic clouds. The tracking of silver iodide (AgI) particles inside of water drops allows the proper simulation of the immersion nucleation. The ice formations by deposition, condensational freezing, and contact nucleation of AgI particles are also simulated in the scheme. Cloud formation—both stably stratified and convective—and the spread of AgI particles were simulated by idealized flow over a two-dimensional (2D) bell-shaped mountain. The results of numerical experiments show the following: (i) Only the airborne seeding enhances precipitation in stably stratified layer clouds. Seeding can reduce or enhance precipitation in convective clouds. AgI seeding can significantly affect the spatial distribution of the surface precipitation in orographic clouds. (ii) The positive seeding effect is primarily due to additional diffusional growth of AgI-nucleated ice crystals in layer clouds. In convective clouds, seeding-induced changes of both diffusion and riming processes determine the seeding effect. (iii) The seeding effect is inversely related to the natural precipitation efficiency. (iv) Bulk seeding parameterization is adequate to simulate AgI seeding impacts on wintertime orographic clouds. More uncertainties of ground-seeding effects are found between bulk and bin simulations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author: Lulin Xue, xuel@ucar.edu
Save