• Addepalli, B., and E. R. Pardyjak, 2013: Investigation of the flow structure in step-up street canyons—Mean flow and turbulence statistics. Bound.-Layer Meteor., 148, 133155, doi:10.1007/s10546-013-9810-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bady, M., S. Kato, and H. Huang, 2008: Towards the application of indoor ventilation efficiency indices to evaluate the air quality of urban areas. Build. Environ., 43, 19912004, doi:10.1016/j.buildenv.2007.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakosi, J., P. Franzese, and Z. Boybeyi, 2009: Joint PDF modelling of turbulent flow and dispersion in an urban street canyon. Bound.-Layer Meteor., 131, 245261, doi:10.1007/s10546-009-9370-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beelen, R., and Coauthors, 2014: Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet, 383, 785795, doi:10.1016/S0140-6736(13)62158-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentham, T., and R. Britter, 2003: Spatially averaged flow within obstacle arrays. Atmos. Environ., 37, 20372043, doi:10.1016/S1352-2310(03)00123-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolin, B., G. Aspling, and C. Persson, 1974: Residence time of atmospheric pollutants as dependent on source characteristics, atmospheric diffussion processes and sink mechanisms. Tellus, 26, 185195, doi:10.3402/tellusa.v26i1-2.9772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, M. J., R. E. Lawson Jr., D. S. DeCroix, and R. L. Lee., 2000: Mean flow and turbulence measurements around a 2-D array of buildings in a wind tunnel. Proc. 11th Joint Conf. on the Applications of Air Pollution Meteorology with the Air and Waste Management Association, Long Beach, CA, Amer. Meteor. Soc., 35–40.

  • Buccolieri, R., P. Salizzoni, L. Soulhac, V. Garbero, and S. Di Sabatino, 2015: The breathability of compact cities. Urban Climate, 13, 7393, doi:10.1016/j.uclim.2015.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, K.-H., H.-M. Kao, and T.-J. Chang, 2012: Lagrangian modeling of particle concentration distribution in indoor environment with different kernel functions and particle search algorithms. Build. Environ., 57, 8187, doi:10.1016/j.buildenv.2012.04.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, T.-J., H.-M. Kao, and R. S.-W. Yam, 2013: Lagrangian modeling of the particle residence time in indoor environment. Build. Environ., 62, 5562, doi:10.1016/j.buildenv.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coceal, O., T. G. Thomas, I. P. Castro, and S. E. Belcher, 2006: Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Bound.-Layer Meteor., 121, 491519, doi:10.1007/s10546-006-9076-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, Z., X. Cai, and C. J. Baker, 2004: Large-eddy simulation of turbulent flow in a street canyon. Quart. J. Roy. Meteor. Soc., 130, 13731394, doi:10.1256/qj.02.150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Brauwere, A., B. de Brye, S. Blaise, and E. Deleersnijder, 2011: Residence time, exposure time and connectivity in the Scheldt Estuary. J. Mar. Syst., 84, 8595, doi:10.1016/j.jmarsys.2010.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delhez, E. J. M., 2006: Transient residence and exposure times. Ocean Sci., 2, 19, doi:10.5194/os-2-1-2006.

  • Delhez, E. J. M., and É. Deleersnijder, 2006: The boundary layer of the residence time field. Ocean Dyn., 56, 139150, doi:10.1007/s10236-006-0067-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delhez, E. J. M., and É. Deleersnijder, 2012: Residence and exposure times: When diffusion does not matter. Ocean Dyn., 62, 13991407, doi:10.1007/s10236-012-0568-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delhez, E. J. M., A. W. Heemink, and É. Deleersnijder, 2004: Residence time in a semi-enclosed domain from the solution of an adjoint problem. Estuarine Coastal Shelf Sci., 61, 691702, doi:10.1016/j.ecss.2004.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delhez, E. J. M., B. de Brye, A. de Brauwere, and É. Deleersnijder, 2014: Residence time vs influence time. J. Mar. Syst., 132, 185195, doi:10.1016/j.jmarsys.2013.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DePaul, F. T., and C. M. Sheih, 1985: A tracer study of dispersion in an urban street canyon. Atmos. Environ., 19, 555559, doi:10.1016/0004-6981(85)90034-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, N. S., and A. S. Tomlin, 2007: A Lagrangian stochastic model for predicting concentration fluctuations in urban areas. Atmos. Environ., 41, 81148127, doi:10.1016/j.atmosenv.2007.06.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, S., 1997: Universality of the Lagrangian velocity structure function constant (C0) across different kinds of turbulence. Bound.-Layer Meteor., 83, 207219, doi:10.1023/A:1000216809160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etheridge, D., and M. Sandberg, 1996: Building Ventilation: Theory and Measurement. Wiley, 724 pp.

  • Franke, J., A. Hellsten, H. Schlünzen, and B. Carissimo, Eds., 2007: Best practice guideline for the CFD simulation of flows in the urban environment: COST action 732—Quality assurance and improvement of microscale meteorological models. COST Office Rep., 52 pp.

  • Gardiner, C. W., 2004: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. 3rd ed. Springer, 415 pp.

  • Gu, Z.-L., Y.-W. Zhang, Y. Cheng, and S.-C. Lee, 2011: Effect of uneven building layout on air flow and pollutant dispersion in non-uniform street canyons. Build. Environ., 46, 26572665, doi:10.1016/j.buildenv.2011.06.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and R. A. Plumb, 1994: Age as a diagnostic of stratospheric transport. J. Geophys. Res., 99, 10591070, doi:10.1029/93JD03192.

  • Hang, J., M. Sandberg, and Y. Li, 2009: Age of air and air exchange efficiency in idealized city models. Build. Environ., 44, 17141723, doi:10.1016/j.buildenv.2008.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hang, J., Y. Li, R. Buccolieri, M. Sandberg, and S. Di Sabatino, 2012: On the contribution of mean flow and turbulence to city breathability: The case of long streets with tall buildings. Sci. Total Environ., 416, 362373, doi:10.1016/j.scitotenv.2011.12.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hang, J., Z. Luo, M. Sandberg, and J. Gong, 2013: Natural ventilation assessment in typical open and semi-open urban environments under various wind directions. Build. Environ., 70, 318333, doi:10.1016/j.buildenv.2013.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., and Coauthors, 2006: Detailed simulations of atmospheric flow and dispersion in downtown Manhattan: An application of five computational fluid dynamics models. Bull. Amer. Meteor. Soc., 87, 17131726, doi:10.1175/BAMS-87-12-1713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, F., S. Raasch, and Y. Noh, 2015: Entrainment of aerosols and their activation in a shallow cumulus cloud studied with a coupled LCM–LES approach. Atmos. Res., 156, 4357, doi:10.1016/j.atmosres.2014.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holzer, M., and T. M. Hall, 2000: Transit-time and tracer-age distributions in geophysical flows. J. Atmos. Sci., 57, 35393558, doi:10.1175/1520-0469(2000)057<3539:TTATAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inagaki, A., M. C. L. Castillo, Y. Yamashita, M. Kanda, and H. Takimoto, 2012: Large-eddy simulation of coherent flow structures within a cubical canopy. Bound.-Layer Meteor., 142, 207222, doi:10.1007/s10546-011-9671-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., and H. Huang, 2009: Ventilation efficiency of void space surrounded by buildings with wind blowing over built-up urban area. J. Wind Eng. Ind. Aerodyn., 97, 358367, doi:10.1016/j.jweia.2009.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., K. Ito, and S. Murakami, 2003: Analysis of visitation frequency through particle tracking method based on LES and model experiment. Indoor Air, 13, 182193, doi:10.1034/j.1600-0668.2003.00173.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., and J. M. Galvez, 2015: Flow and turbulence characteristics in a suburban street canyon. Environ. Fluid Mech., 15, 419438, doi:10.1007/s10652-014-9352-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, I. Y., and H. M. Park, 1994: Parameterization of the pollutant transport and dispersion in urban street canyons. Atmos. Environ., 28, 23432349, doi:10.1016/1352-2310(94)90488-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letzel, M. O., M. Krane, and S. Raasch, 2008: High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos. Environ., 42, 87708784, doi:10.1016/j.atmosenv.2008.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letzel, M. O., C. Helmke, E. Ng, X. An, A. Lai, and S. Raasch, 2012: LES case study on pedestrian level ventilation in two neighbourhoods in Hong Kong. Meteor. Z., 21, 575589, doi:10.1127/0941-2948/2012/0356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X.-X., C.-H. Liu, D. Y. C. Leung, and K. M. Lam, 2006: Recent progress in CFD modelling of wind field and pollutant transport in street canyons. Atmos. Environ., 40, 56405658, doi:10.1016/j.atmosenv.2006.04.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C.-H., D. Y. C. Leung, and M. C. Barth, 2005: On the prediction of air and pollutant exchange rates in street canyons of different aspect ratios using large-eddy simulation. Atmos. Environ., 39, 15671574, doi:10.1016/j.atmosenv.2004.08.036.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. S., S. G. Miao, C. L. Zhang, G. X. Cui, and Z. S. Zhang, 2012: Study on micro-atmospheric environment by coupling large eddy simulation with mesoscale model. J. Wind Eng. Ind. Aerodyn., 107–108, 106117, doi:10.1016/j.jweia.2012.03.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, K. W., and K. Ngan, 2015a: Characterising the pollutant ventilation characteristics of street canyons using the tracer age and age spectrum. Atmos. Environ., 122, 611621, doi:10.1016/j.atmosenv.2015.10.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, K. W., and K. Ngan, 2015b: Predictability of turbulent flow in street canyons. Bound.-Layer Meteor., 156, 191210, doi:10.1007/s10546-015-0014-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and P. R. Kramer, 1999: Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena. Phys. Rep., 314, 237574, doi:10.1016/S0370-1573(98)00083-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maronga, B., and Coauthors, 2015: The parallelized large-eddy simulation model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geosci. Model Dev., 8, 25152551, doi:10.5194/gmdd-8-1539-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murena, F., and G. Ricciardi, 2005: CO residence times on urban roads in the Naples area using air quality monitoring data. Atmos. Environ., 39, 19932001, doi:10.1016/j.atmosenv.2004.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngan, K., and K. W. Lo, 2016: Revisiting the flow regimes for urban street canyons using the numerical Green’s function. Environ. Fluid Mech., 16, 313334, doi:10.1007/s10652-015-9422-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T., 1988: Street design and urban canopy layer climate. Energy Build., 11, 103113, doi:10.1016/0378-7788(88)90026-6.

  • Park, S.-B., and J.-J. Baik, 2013: A large-eddy simulation study of thermal effects on turbulence coherent structures in and above a building array. J. Appl. Meteor. Climatol., 52, 13481365, doi:10.1175/JAMC-D-12-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-B., J.-J. Baik, S. Raasch, and M. O. Letzel, 2012: A large-eddy simulation study of thermal effects on turbulent flow and dispersion in and above a street canyon. J. Appl. Meteor. Climatol., 51, 829841, doi:10.1175/JAMC-D-11-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavageau, M., and M. Schatzmann, 1999: Wind tunnel measurements of concentration fluctuations in an urban street canyon. Atmos. Environ., 33, 39613971, doi:10.1016/S1352-2310(99)00138-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavliotis, G. A., and A. M. Stuart, 2008: Multiscale Methods: Averaging and Homogenization. Springer, 307 pp.

  • Raasch, S., and M. Schröter, 2001: PALM—A large-eddy simulation model performing on massively parallel computers. Meteor. Z., 10, 363372, doi:10.1127/0941-2948/2001/0010-0363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramponi, R., B. Blocken, L. B. de Coo, and W. D. Janssen, 2015: CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Build. Environ., 92, 152166, doi:10.1016/j.buildenv.2015.04.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redner, S., 2001: A Guide to First-Passage Processes. 1st ed. Cambridge University Press, 312 pp.

    • Crossref
    • Export Citation
  • Rodean, H. C., 1996: Stochastic Lagrangian Models of Turbulent Diffusion. Meteor. Monogr., No. 48, Amer. Meteor. Soc., 84 pp., doi:10.1175/0065-9401-26.48.1.

    • Crossref
    • Export Citation
  • Santiago, J. L., and F. Martín, 2008: SLP-2D: A new Lagrangian particle model to simulate pollutant dispersion in street canyons. Atmos. Environ., 42, 39273936, doi:10.1016/j.atmosenv.2007.05.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawford, B. L., 1999: Rotation of trajectories in Lagrangian stochastic models of turbulent dispersion. Bound.-Layer Meteor., 93, 411424, doi:10.1023/A:1002114132715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuss, Z., 2010: Theory and Applications of Stochastic Processes: An Analytical Approach. Springer, 468 pp., doi:10.1007/978-1-4419-1605-1.

    • Crossref
    • Export Citation
  • Shah, A. S. V., and Coauthors, 2015: Short term exposure to air pollution and stroke: Systematic review and meta-analysis. BMJ, 350, 1295, doi:10.1136/bmj.h1295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., J. N. Koshyk, and K. Ngan, 2000: On the nature of large-scale mixing in the stratosphere and mesosphere. J. Geophys. Res., 105, 12 43312 446, doi:10.1029/2000JD900133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sini, J.-F., S. Anquetin, and P. G. Mestayer, 1996: Pollutant dispersion and thermal effects in urban street canyons. Atmos. Environ., 30, 26592677, doi:10.1016/1352-2310(95)00321-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1987: Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech., 180, 529556, doi:10.1017/S0022112087001940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D., and T. Hall, 2002: Age of stratospheric air: Theory, observations, and models. Rev. Geophys., 40, 1010, doi:10.1029/2000RG000101.

  • Weil, J. C., P. P. Sullivan, and C.-H. Moeng, 2004: The use of large-eddy simulations in Lagrangian particle dispersion models. J. Atmos. Sci., 61, 28772887, doi:10.1175/JAS-3302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, doi:10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. D., E. Yee, N. Ek, and R. d’Amours, 2009: Lagrangian simulation of wind transport in the urban environment. Quart. J. Roy. Meteor. Soc., 135, 15861602, doi:10.1002/qj.452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, J., and D. Y. C. Leung, 2001: A concentration correction scheme for Lagrangian particle model and its application in street canyon air dispersion modelling. Atmos. Environ., 35, 57795788, doi:10.1016/S1352-2310(01)00358-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zannetti, P., Ed., 2003: Air Quality Modeling: Theories, Methodologies, Computational Techniques, and Available Databases and Software. Vol. 1. Air and Waste Management Association, 431 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 405 167 7
PDF Downloads 290 103 4

Characterizing Ventilation and Exposure in Street Canyons Using Lagrangian Particles

K. W. LoSchool of Energy and Environment, City University of Hong Kong, Hong Kong, China

Search for other papers by K. W. Lo in
Current site
Google Scholar
PubMed
Close
and
K. NganSchool of Energy and Environment, City University of Hong Kong, Hong Kong, China

Search for other papers by K. Ngan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The residence time measures the rate at which a pollutant escapes from a region of interest. Previous studies of urban ventilation have estimated the mean residence time from Eulerian data by assuming a spatially homogeneous pollutant field. Using a large-eddy simulation and a Lagrangian particle model, the residence and exposure times are calculated for an idealized street canyon in the skimming-flow region and a deep street canyon within a realistic urban area. For both domains, the mean residence time is on the order of a canyon circulation time scale, while the mean exposure time, which includes re-entrainment and characterizes the total time spent by a pollutant in a region of interest, is about 20% longer. Intensive quantities such as the Lagrangian visitation factor and return coefficient indicate that re-entrainment is modest. Probability distribution functions of the exposure and residence times are nearly exponential for both domains, in accord with pure diffusion and single-time-scale, vertical-exchange parameterizations. It is argued that, by analogy with Brownian motion, the mean residence and exposure times are set primarily by the mean circulation rather than the turbulence when the flow approximates that within a two-dimensional street canyon.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: K. Ngan, keith.ngan@cityu.edu.hk

Abstract

The residence time measures the rate at which a pollutant escapes from a region of interest. Previous studies of urban ventilation have estimated the mean residence time from Eulerian data by assuming a spatially homogeneous pollutant field. Using a large-eddy simulation and a Lagrangian particle model, the residence and exposure times are calculated for an idealized street canyon in the skimming-flow region and a deep street canyon within a realistic urban area. For both domains, the mean residence time is on the order of a canyon circulation time scale, while the mean exposure time, which includes re-entrainment and characterizes the total time spent by a pollutant in a region of interest, is about 20% longer. Intensive quantities such as the Lagrangian visitation factor and return coefficient indicate that re-entrainment is modest. Probability distribution functions of the exposure and residence times are nearly exponential for both domains, in accord with pure diffusion and single-time-scale, vertical-exchange parameterizations. It is argued that, by analogy with Brownian motion, the mean residence and exposure times are set primarily by the mean circulation rather than the turbulence when the flow approximates that within a two-dimensional street canyon.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: K. Ngan, keith.ngan@cityu.edu.hk
Save