• Barlow, J., 2014: Progress in observing and modelling the urban boundary layer. Urban Climate, 10, 216240, doi:10.1016/j.uclim.2014.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cionco, R. M., 1965: A mathematical model for air flow in a vegetative canopy. J. Appl. Meteor., 4, 517522, doi:10.1175/1520-0450(1965)004<0517:AMMFAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, doi:10.1002/qj.2054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4DVar, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, doi:10.1002/qj.49712051912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, Z., X. Cai, and C. J. Baker, 2004: Large-eddy simulation of turbulent flow in a street canyon. Quart. J. Roy. Meteor. Soc., 130, 13731394, doi:10.1256/qj.02.150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daley, R., 1993: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Sabatino, S., E. Solazzo, P. Paradisi, and R. Britter, 2008: A simple model for spatially-averaged wind profiles within and above an urban canopy. Bound.-Layer Meteor., 127, 131151, doi:10.1007/s10546-007-9250-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., P. H. Haynes, M. N. Juckes, and T. G. Shepherd, 1991: Stability of a two-dimensional vorticity filament under uniform strain. J. Fluid Mech., 230, 647665, doi:10.1017/S0022112091000915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and M. Gingrich, 2014: Atmospheric predictability: Why butterflies are not of practical importance. J. Atmos. Sci., 71, 24762488, doi:10.1175/JAS-D-14-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foken, T., 2008: Micrometeorology. Springer-Verlag, 306 pp., doi:10.1007/978-3-540-74666-9.

    • Crossref
    • Export Citation
  • Franke, J., A. Hellsten, H. Schlünzen, and B. Carissimo, Eds., 2007: Best practice guideline for the CFD simulation of flows in the urban environment—COST Action 732: Quality assurance and improvement of microscale meteorological models. COST Office Tech. Rep., 52 pp. [Available online at http://theairshed.com/pdf/COST%20732%20Best%20Practice%20Guideline%20May%202007.pdf.]

  • Hanna, S. R., and Coauthors, 2006: Detailed simulations of atmospheric flow and dispersion in downtown Manhattan: An applications of five computational fluid dynamics models. Bull. Amer. Meteor. Soc., 87, 17131726, doi:10.1175/BAMS-87-12-1713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, L., I. Watson, and G. Johnson, 1990: Modelling air flow regimes in urban canyons. Energy Build., 15, 315324, doi:10.1016/0378-7788(90)90004-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inagaki, A., M. Castillo, Y. Yamashita, M. Kanda, and H. Takimoto, 2012: Large-eddy simulation of coherent flow structures within a cubical canopy. Bound.-Layer Meteor., 142, 207222, doi:10.1007/s10546-011-9671-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

    • Crossref
    • Export Citation
  • Leith, C., and R. H. Kraichnan, 1972: Predictability of turbulent flows. J. Atmos. Sci., 29, 10411057, doi:10.1175/1520-0469(1972)029<1041:POTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letzel, M. O., M. Krane, and S. Raasch, 2008: High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos. Environ., 42, 87708784, doi:10.1016/j.atmosenv.2008.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letzel, M. O., C. Helmke, E. Ng, X. An, A. Lai, and S. Raasch, 2012: LES case study on pedestrian level ventilation in two neighbourhoods in Hong Kong. Meteor. Z., 21, 575589, doi:10.1127/0941-2948/2012/0356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X.-X., C.-H. Liu, D. Y. C. Leung, and K. M. Lam, 2006: Recent progress in CFD modelling of wind field and pollutant transport in street canyons. Atmos. Environ., 40, 56405658, doi:10.1016/j.atmosenv.2006.04.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C.-H., and M. Barth, 2002: Large-eddy simulation of flow and scalar transport in a modeled street canyon. J. Appl. Meteor., 41, 660673, doi:10.1175/1520-0450(2002)041<0660:LESOFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, K. W., and K. Ngan, 2015: Predictability of turbulent flow in street canyons. Bound.-Layer Meteor., 156, 191210, doi:10.1007/s10546-015-0014-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, K. W., and K. Ngan, 2017: Characterizing ventilation and exposure in street canyons using Lagrangian particles. J. Appl. Meteor. Climatol., 56, 11771194, doi:10.1175/JAMC-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 31833203, doi:10.1256/qj.02.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, doi:10.1111/j.2153-3490.1969.tb00444.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macdonald, R. W., 2000: Modelling the mean velocity profile in the urban canopy layer. Bound.-Layer Meteor., 97, 2545, doi:10.1023/A:1002785830512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maronga, B., and Coauthors, 2015: The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geosci. Model Dev., 8, 25152551, doi:10.5194/gmd-8-2515-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngan, K., and G. E. Eperon, 2012: Middle atmosphere predictability in a numerical weather prediction model: Revisiting the inverse error cascade. Quart. J. Roy. Meteor. Soc., 138, 13661378, doi:10.1002/qj.984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngan, K., and K. W. Lo, 2016: Revisiting the flow regimes for urban street canyons using the numerical Green’s function. Environ. Fluid Mech., 16, 313334, doi:10.1007/s10652-015-9422-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngan, K., D. N. Straub, and P. Bartello, 2004: Three-dimensionalization of freely-decaying two-dimensional turbulence. Phys. Fluids, 16, 29182932, doi:10.1063/1.1763191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngan, K., P. Bartello, and D. N. Straub, 2009: Predictability of rotating stratified turbulence. J. Atmos. Sci., 66, 13841400, doi:10.1175/2008JAS2799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T., 1988: Street design and urban canopy layer climate. Energy Build., 11, 103113, doi:10.1016/0378-7788(88)90026-6.

  • Palmer, T., and R. Hagedorn, Eds., 2006: Predictability of Weather and Climate. Cambridge University Press, 702 pp.

    • Crossref
    • Export Citation
  • Park, S.-B., and J.-J. Baik, 2013: A large-eddy simulation study of thermal effects on turbulence coherent structures in and above a building array. J. Appl. Meteor. Climatol., 52, 13481365, doi:10.1175/JAMC-D-12-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raasch, S., and M. Schröter, 2001: PALM—A large-eddy simulation model performing on massively parallel computers. Meteor. Z., 10, 363372, doi:10.1127/0941-2948/2001/0010-0363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rawlins, F., S. P. Ballard, K. J. Bovis, A. M. Clayton, D. Li, G. W. Inverarity, A. C. Lorenc, and T. J. Payne, 2007: The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 133, 347362, doi:10.1002/qj.32.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlunzen, K., D. Grawe, S. Bohnenstengel, I. Schluter, and R. Koppmann, 2011: Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges. J. Wind Eng. Ind. Aerodyn., 99, 217225, doi:10.1016/j.jweia.2011.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor., 33, 416434, doi:10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanguay, M., P. Bartello, and P. Gauthier, 1995: Four-dimensional data assimilation with a wide range of scales. Tellus, 47A, 974997, doi:10.1034/j.1600-0870.1995.00204.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tribbia, J. J., and D. P. Baumhefner, 2004: Scale interactions and atmospheric predictability: An updated perspective. Mon. Wea. Rev., 132, 703713, doi:10.1175/1520-0493(2004)132<0703:SIAAPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, T., and K. Koike, 2011: Downscaling mesoscale meteorological models for computational wind engineering applications. J. Wind Eng. Ind. Aerodyn., 99, 199216, doi:10.1016/j.jweia.2011.01.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zajaczkowski, F. J., S. E. Haupt, and K. J. Schmehl, 2011: A preliminary study of assimilating numerical weather prediction data into computational fluid dynamics models for wind prediction. J. Wind Eng. Ind. Aerodyn., 99, 320329, doi:10.1016/j.jweia.2011.01.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 212 126 4
PDF Downloads 101 47 1

Linear Error Dynamics for Turbulent Flow in Urban Street Canyons

K. NganSchool of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China

Search for other papers by K. Ngan in
Current site
Google Scholar
PubMed
Close
and
K. W. LoSchool of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China

Search for other papers by K. W. Lo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ability to make forecasts depends on atmospheric predictability and the growth of errors. It has recently been shown that the predictability of urban boundary layers differs in important respects from that of the free atmosphere on the mesoscale and larger; in particular, nonlinearity may play a less prominent role in the error evolution. This paper investigates the applicability of linear theory to the error evolution in turbulent street-canyon flow. Using large-eddy simulation, streamwise aspect ratios between 0.15 and 1.50, and identical-twin experiments, it is shown that the growth rate of the error kinetic energy can be estimated from Eulerian averages and that linear theory provides insight into the spatial structure of the error field after saturation. The results should be applicable to cities with deep and closely spaced canyons. Implications for data assimilation and modeling are discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: K. Ngan, keith.ngan@cityu.edu.hk

Abstract

The ability to make forecasts depends on atmospheric predictability and the growth of errors. It has recently been shown that the predictability of urban boundary layers differs in important respects from that of the free atmosphere on the mesoscale and larger; in particular, nonlinearity may play a less prominent role in the error evolution. This paper investigates the applicability of linear theory to the error evolution in turbulent street-canyon flow. Using large-eddy simulation, streamwise aspect ratios between 0.15 and 1.50, and identical-twin experiments, it is shown that the growth rate of the error kinetic energy can be estimated from Eulerian averages and that linear theory provides insight into the spatial structure of the error field after saturation. The results should be applicable to cities with deep and closely spaced canyons. Implications for data assimilation and modeling are discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: K. Ngan, keith.ngan@cityu.edu.hk
Save