• Badr, H. S., B. F. Zaitchik, and A. K. Dezfuli, 2014: HiClimR: Hierarchical climate regionalization. Comprehensive R Archive Network (CRAN). [Available online at http://cran.r-project.org/package=HiClimR.]

  • Badr, H. S., B. F. Zaitchik, and A. K. Dezfuli, 2015: A tool for hierarchical climate regionalization. Earth Sci. Inf., 8, 949958, doi:10.1007/s12145-015-0221-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., S. Li, S. J. Mason, D. G. DeWitt, L. Goddard, and X. Gong, 2010: Verification of the first 11 years of IRI’s seasonal climate forecasts. J. Appl. Meteor. Climatol., 49, 493520, doi:10.1175/2009JAMC2325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batté, L., and M. Déqué, 2011: Seasonal predictions of precipitation over Africa using coupled ocean-atmosphere general circulation models: Skill of the ENSEMBLES project multimodel ensemble forecasts. Tellus, 63A, 283299, doi:10.1111/j.1600-0870.2010.00493.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berhane, F., and B. Zaitchik, 2014: Modulation of daily precipitation over East Africa by the Madden–Julian oscillation. J. Climate, 27, 60166034, doi:10.1175/JCLI-D-13-00693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berhane, F., B. Zaitchik, and A. Dezfuli, 2014: Subseasonal analysis of precipitation variability in the Blue Nile River basin. J. Climate, 27, 325344, doi:10.1175/JCLI-D-13-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Block, P., and B. Rajagopalan, 2007: Interannual variability and ensemble forecast of upper Blue Nile basin Kiremt season precipitation. J. Hydrometeor., 8, 327343, doi:10.1175/JHM580.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camberlin, P., and N. Philippon, 2002: The East African March–May rainy season: Associated atmospheric dynamics and predictability over the 1968–97 period. J. Climate, 15, 10021019, doi:10.1175/1520-0442(2002)015<1002:TEAMMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conway, D., 2000: The climate and hydrology of the upper Blue Nile River. Geogr. J., 166, 4962, doi:10.1111/j.1475-4959.2000.tb00006.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dezfuli, A., and S. Nicholson, 2013: The relationship of rainfall variability in western equatorial Africa to the tropical oceans and atmospheric circulation. Part II: The boreal autumn. J. Climate, 26, 6684, doi:10.1175/JCLI-D-11-00686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinku, T., P. Block, J. Sharoff, K. Hailemariam, D. Osgood, J. del Corral, R. Cousin, and M. C. Thomson, 2014: Bridging critical gaps in climate services and applications in Africa. Earth Perspect., 1, 15, doi:10.1186/2194-6434-1-15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diro, G. T., D. I. F. Grimes, and E. Black, 2011: Teleconnections between Ethiopian summer rainfall and sea surface temperature: Part II. Seasonal forecasting. Climate Dyn., 37, 121131, doi:10.1007/s00382-010-0896-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO, 2000: The elimination of food insecurity in the Horn of Africa: A concerted government and UN agency action. Final Rep. [Available online at http://www.fao.org/docrep/003/x8406e/x8406e00.htm.]

  • Funk, C., and Coauthors, 2015: The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, doi:10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gissila, T., E. Black, D. I. F. Grimes, and J. M. Slingo, 2004: Seasonal forecasting of the Ethiopian summer rains. Int. J. Climatol., 24, 13451358, doi:10.1002/joc.1078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., S. J. Mason, S. E. Zebiak, C. F. Ropelewski, R. Basher, and M. A. Cane, 2001: Current approaches to seasonal to interannual climate predictions. Int. J. Climatol., 21, 11111152, doi:10.1002/joc.636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, M. R., 2014: Evaluation of coupled model forecasts of Ethiopian highlands summer climate. Adv. Meteor., 894318, doi:10.1155/2014/894318.

  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589, doi:10.1029/97JC01736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., T. L. Bell, R. H. Reichle, M. J. Suarez, and S. D. Schubert, 2008: Using observed spatial correlation structures to increase the skill of subseasonal forecasts. Mon. Wea. Rev., 136, 19231930, doi:10.1175/2007MWR2255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lance, G. N., and W. T. Williams, 1967: A general theory of classificatory sorting strategies. 1. Hierarchical systems. Comput. J., 9, 373380, doi:10.1093/comjnl/9.4.373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., and D. G. DeWitt, 2012: A recent and abrupt decline in the East African long rains. Geophys. Res. Lett., 39, L02702, doi:10.1029/2011GL050337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murtagh, F., 1985: Multidimensional Clustering Algorithms. Compstat Lectures: Lectures in Computational Statistics, J. M. Chambers, et al., Eds., Vol. 4, Physika Verlag, 134 pp.

  • Murtagh, F., and P. Legendre, 2014: Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif., 31, 274295, doi:10.1007/s00357-014-9161-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 1996: A review of climate dynamics and climate variability in eastern Africa. The Limnology, Climatology and Paleoclimatology of the East African Lakes, T. C. Johnson and E. O. Odada, Eds., CRC Press, 25–56.

    • Crossref
    • Export Citation
  • Nicholson, S. E., 2000: The nature of rainfall variability over Africa on time scales of decades to millennia. Global Planet. Change, 26, 137158, doi:10.1016/S0921-8181(00)00040-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2014: The predictability of rainfall over the Greater Horn of Africa. Part I: Prediction of seasonal rainfall. J. Hydrometeor., 15, 10111027, doi:10.1175/JHM-D-13-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olsson, L., 1993: On the causes of famine: Drought, desertification and market failure in the Sudan. Ambio, 22, 395403.

  • Parker, D. E., P. D. Jones, C. K. Folland, and A. Bevan, 1994: Interdecadal changes of surface temperature since the late nineteenth century. J. Geophys. Res., 99, 14 37314 399, doi:10.1029/94JD00548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948, doi:10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segele, Z. T., and P. J. Lamb, 2005: Characterization and variability of Kiremt rainy season over Ethiopia. Meteor. Atmos. Phys., 89, 153180, doi:10.1007/s00703-005-0127-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsidu, G. M., 2012: High-resolution monthly rainfall database for Ethiopia: Homogenization, reconstruction, and gridding. J. Climate, 25, 84228443, doi:10.1175/JCLI-D-12-00027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, J. H., Jr., 1963: Hierarchical grouping to optimize an objective function. J. Amer. Stat. Assoc., 58, 236244, doi:10.1080/01621459.1963.10500845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Williams, A. P., and C. Funk, 2011: A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dyn., 37, 24172435, doi:10.1007/s00382-010-0984-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., R. Seager, M. A. Cane, and B. Lyon, 2014: The East African long rains in observations and models. J. Climate, 27, 71857202, doi:10.1175/JCLI-D-13-00447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 242 80 6
PDF Downloads 129 32 2

Enhancing Dynamical Seasonal Predictions through Objective Regionalization

Saleh SattiDepartment of Earth and Planetary Science, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Saleh Satti in
Current site
Google Scholar
PubMed
Close
,
Benjamin F. ZaitchikDepartment of Earth and Planetary Science, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Benjamin F. Zaitchik in
Current site
Google Scholar
PubMed
Close
,
Hamada S. BadrDepartment of Earth and Planetary Science, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Hamada S. Badr in
Current site
Google Scholar
PubMed
Close
, and
Tsegaye TadesseSchool of Natural Resources, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Tsegaye Tadesse in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Improving seasonal forecasts in East Africa has great implications for food security and water resources planning in the region. Dynamically based seasonal forecast systems have much to contribute to this effort, as they have demonstrated ability to represent and, to some extent, predict large-scale atmospheric dynamics that drive interannual rainfall variability in East Africa. However, these global models often exhibit spatial biases in their placement of rainfall and rainfall anomalies within the region, which limits their direct applicability to forecast-based decision-making. This paper introduces a method that uses objective climate regionalization to improve the utility of dynamically based forecast-system predictions for East Africa. By breaking up the study area into regions that are homogenous in interannual precipitation variability, it is shown that models sometimes capture drivers of variability but misplace precipitation anomalies. These errors are evident in the pattern of homogenous regions in forecast systems relative to observation, indicating that forecasts can more meaningfully be applied at the scale of the analogous homogeneous climate region than as a direct forecast of the local grid cell. This regionalization approach was tested during the July–September (JAS) rain months, and results show an improvement in the predictions from version 4.5 of the Max Plank Institute for Meteorology’s atmosphere–ocean general circulation model (ECHAM4.5) for applicable areas of East Africa for the two test cases presented.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Saleh Satti, ssatti1@jhu.edu

Abstract

Improving seasonal forecasts in East Africa has great implications for food security and water resources planning in the region. Dynamically based seasonal forecast systems have much to contribute to this effort, as they have demonstrated ability to represent and, to some extent, predict large-scale atmospheric dynamics that drive interannual rainfall variability in East Africa. However, these global models often exhibit spatial biases in their placement of rainfall and rainfall anomalies within the region, which limits their direct applicability to forecast-based decision-making. This paper introduces a method that uses objective climate regionalization to improve the utility of dynamically based forecast-system predictions for East Africa. By breaking up the study area into regions that are homogenous in interannual precipitation variability, it is shown that models sometimes capture drivers of variability but misplace precipitation anomalies. These errors are evident in the pattern of homogenous regions in forecast systems relative to observation, indicating that forecasts can more meaningfully be applied at the scale of the analogous homogeneous climate region than as a direct forecast of the local grid cell. This regionalization approach was tested during the July–September (JAS) rain months, and results show an improvement in the predictions from version 4.5 of the Max Plank Institute for Meteorology’s atmosphere–ocean general circulation model (ECHAM4.5) for applicable areas of East Africa for the two test cases presented.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Saleh Satti, ssatti1@jhu.edu
Save