• Alessandrini, S., S. Sperati, and P. Pinson, 2013: A comparison between the ECMWF and COSMO ensemble prediction systems applied to short-term wind power forecasting on real data. Appl. Energy, 107, 271280, doi:10.1016/j.apenergy.2013.02.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, C. L., and M. Z. Jacobson, 2013: Geographical and seasonal variability of the global “practical” wind resources. Appl. Geogr., 45, 119130, doi:10.1016/j.apgeog.2013.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and H. M. van den Dool, 1993: A degeneracy in cross-validated skill in regression-based forecasts. J. Climate, 6, 963977, doi:10.1175/1520-0442(1993)006<0963:ADICVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, doi:10.1175/BAMS-D-11-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bett, P. E., and H. E. Thornton, 2016: The climatological relationships between wind and solar energy supply in Britain. Renewable Energy, 87, 96110, doi:10.1016/j.renene.2015.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bröcker, J., 2008: On reliability analysis of multi-categorical forecasts. Nonlinear Processes Geophys., 15, 661673, doi:10.5194/npg-15-661-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bröcker, J., and L. A. Smith, 2007: Scoring probabilistic forecasts: The importance of being proper. Wea. Forecasting, 22, 382388, doi:10.1175/WAF966.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buontempo, C., C. D. Hewitt, F. J. Doblas-Reyes, and S. Dessai, 2014: Climate service development, delivery and use in Europe at monthly to inter-annual timescales. Climate Risk Manage., 6, 15, doi:10.1016/j.crm.2014.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, D., D. Brayshaw, J. Methven, P. Coker, and D. Lenaghan, 2015: Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain. Renewable Energy, 75, 767778, doi:10.1016/j.renene.2014.10.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaudhry, N., and L. Hughes, 2012: Forecasting the reliability of wind-energy systems: A new approach using the RL technique. Appl. Energy, 96, 422430, doi:10.1016/j.apenergy.2012.02.076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, R. T., P. E. Bett, H. E. Thornton, and A. A. Scaife, 2017: Skilful seasonal predictions for the European energy industry. Environ. Res. Lett., 12, 024002, doi:10.1088/1748-9326/aa57ab.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coelho, C. A. S., and S. M. S. Costa, 2010: Challenges for integrating seasonal climate forecasts in user applications. Curr. Opin. Environ. Sustainability, 2, 317325, doi:10.1016/j.cosust.2010.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Felice, M., A. Alessandri, and F. Catalano, 2015: Seasonal climate forecasts for medium-term electricity demand forecasting. Appl. Energy, 137, 435444, doi:10.1016/j.apenergy.2014.10.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., R. Hagedorn, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—II. Calibration and combination. Tellus, 57A, 234252, doi:10.3402/tellusa.v57i3.14658.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., J. García-Serrano, F. Lienert, A. P. Biescas, and L. R. L. Rodrigues, 2013: Seasonal climate predictability and forecasting: Status and prospects. Wiley Interdiscip. Rev.: Climate Change, 4, 245268, doi:10.1002/wcc.217.

    • Search Google Scholar
    • Export Citation
  • Dunstone, N., D. Smith, A. Scaife, L. Hermanson, R. Eade, N. Robinson, M. Andrews, and J. Knight, 2016: Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci., 9, 809814, doi:10.1038/ngeo2824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., 2005: Alternatives to the chi-square test for evaluating rank histograms from ensemble forecasts. Wea. Forecasting, 20, 789795, doi:10.1175/WAF884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1969: A scoring system for probability forecasts of ranked categories. J. Appl. Meteor., 8, 985987, doi:10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferro, C. A. T., 2014: Fair scores for ensemble forecasts. Quart. J. Roy. Meteor. Soc., 140, 19171923, doi:10.1002/qj.2270.

  • Fricker, T. E., C. A. T. Ferro, and D. B. Stephenson, 2013: Three recommendations for evaluating climate predictions. Meteor. Appl., 20, 246255, doi:10.1002/met.1409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Füss, R., S. Mahringer, and M. Prokopczuk, 2015: Electricity derivatives pricing with forward-looking information. J. Econ. Dyn. Control, 58, 3457, doi:10.1016/j.jedc.2015.05.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Bustamante, E., J. F. González-Rouco, P. A. Jiménez, J. Navarro, and J. P. Montávez, 2009: A comparison of methodologies for monthly wind energy estimation. Wind Energy, 12, 640659, doi:10.1002/we.315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Morales, M. B., and L. Dubus, 2007: Forecasting precipitation for hydroelectric power management: How to exploit GCM’s seasonal ensemble forecasts. Int. J. Climatol., 27, 1691, doi:10.1002/joc.1608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and D. R. Cayan, 2003: Heavy daily precipitation frequency over the contiguous United States: Sources of climatic variability and seasonal predictability. J. Climate, 16, 27522765, doi:10.1175/1520-0442(2003)016<2752:HDPFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graff, M., R. Peña, A. Medina, and H. J. Escalante, 2014: Wind speed forecasting using a portfolio of forecasters. Renewable Energy, 68, 550559, doi:10.1016/j.renene.2014.02.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, B. D., P. E. Hamlington, S. G. Collins, S. R. Alexander, and K.-Y. Kim, 2015: Effects of climate oscillations on wind resource variability in the United States. Geophys. Res. Lett., 42, 145152, doi:10.1002/2014GL062370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hueging, H., R. Haas, K. Born, D. Jacob, and J. G. Pinto, 2013: Regional changes in wind energy potential over Europe using regional climate model ensemble projections. J. Appl. Meteor. Climatol., 52, 903917, doi:10.1175/JAMC-D-12-086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Jolliffe, I. T., and C. Primo, 2008: Evaluating rank histograms using decompositions of the chi-square test statistic. Mon. Wea. Rev., 136, 21332139, doi:10.1175/2007MWR2219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, Eds., 2012: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. John Wiley and Sons, 292 pp.

    • Crossref
    • Export Citation
  • Kirtman, B., and A. Pirani, 2009: The state of the art of seasonal prediction: Outcomes and recommendations from the First World Climate Research Program Workshop on Seasonal Prediction. Bull. Amer. Meteor. Soc., 90, 455458, doi:10.1175/2008BAMS2707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, J.-E., 2016: Implementation success or failure: The COP21 agreement for the 21rest century. J. Multidiscip. Eng. Sci. Technol., 2, 158166. [Available online at http://journalijcms.com/sites/default/files/issue-files/0076.pdf.]

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., A. F. Hamlet, D. P. Lettenmaier, and A. Kumar, 1999: Simulations of the ENSO hydroclimate signals in the Pacific Northwest Columbia River basin. Bull. Amer. Meteor. Soc., 80, 23132329, doi:10.1175/1520-0477(1999)080<2313:SOTEHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, K. J., D. J. Brayshaw, and A. Charlton-Perez, 2014: Verification of European subseasonal wind speed forecasts. Mon. Wea. Rev., 142, 29782990, doi:10.1175/MWR-D-13-00341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and O. Baddour, 2008: Statistical modelling. Seasonal Climate: Forecasting and Managing Risk, Springer, 163–201.

    • Crossref
    • Export Citation
  • Molteni, F., and Coauthors, 2011: The new ECMWF seasonal forecast system (system 4). ECMWF Tech. Memo. 656, 51 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2011/11209-new-ecmwf-seasonal-forecast-system-system-4.pdf.]

  • Najafi, A., H. Falaghi, J. Contreras, and M. Ramezani, 2016: Medium-term energy hub management subject to electricity price and wind uncertainty. Appl. Energy, 168, 418433, doi:10.1016/j.apenergy.2016.01.074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinson, P., 2012: Adaptive calibration of (u, υ)-wind ensemble forecasts. Quart. J. Roy. Meteor. Soc., 138, 12731284, doi:10.1002/qj.1873.

  • Pinson, P., 2013: Wind energy: Forecasting challenges for its operational management. Stat. Sci., 28, 564585, doi:10.1214/13-STS445.

  • Pinson, P., and J. Tastu, 2013: Discrimination ability of the energy score. Technical University of Denmark Tech. Rep., 17 pp. [Available online at http://orbit.dtu.dk/files/56966842/tr13_15_Pinson_Tastu.pdf.]

  • Pinson, P., H. A. Nielsen, H. Madsen, and G. Kariniotakis, 2009: Skill forecasting from ensemble predictions of wind power. Appl. Energy, 86, 13261334, doi:10.1016/j.apenergy.2008.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and R. J. Barthelmie, 2010: Climate change impacts on wind energy: A review. Renewable Sustainable Energy Rev., 14, 430437, doi:10.1016/j.rser.2009.07.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, X., M. Hoerling, J. Whitaker, G. Bates, and T. Xu, 2006: Diagnosing sources of U.S. seasonal forecast skill. J. Climate, 19, 32793293, doi:10.1175/JCLI3789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renewable Energy Policy Network for the 21st Century, 2015: Renewables 2015 global status report: Key findings 2015. REN21 Tech. Rep., 33 pp. [Available online at http://www.ren21.net/wp-content/uploads/2015/07/GSR2015_KeyFindings_lowres.pdf.]

  • Reyers, M., J. G. Pinto, and J. Moemken, 2015: Statistical–dynamical downscaling for wind energy potentials: Evaluation and applications to decadal hindcasts and climate change projections. Int. J. Climatol., 35, 229244, doi:10.1002/joc.3975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, S., and J. Apt, 2015: What can reanalysis data tell us about wind power? Renewable Energy, 83, 963969, doi:10.1016/j.renene.2015.05.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, J., C. Rochinha, M. Liberato, M. Reyers, and J. Pinto, 2015: Projected changes in wind energy potentials over Iberia. Renewable Energy, 75, 6880, doi:10.1016/j.renene.2014.09.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, doi:10.1002/2014GL059637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schillings, C., T. Wanderer, L. Cameron, J. T. van der Wal, J. Jacquemin, and K. Veum, 2012: A decision support system for assessing offshore wind energy potential in the North Sea. Energy Policy, 49, 541551, doi:10.1016/j.enpol.2012.06.056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, J., and T. Palmer, 2011: Uncertainty in weather and climate prediction. Philos. Trans. Roy. Soc. London, A369, 47514767, doi:10.1098/rsta.2011.0161.

    • Search Google Scholar
    • Export Citation
  • Troccoli, A., 2010: Seasonal climate forecasting. Meteor. Appl., 17, 251268, doi:10.1002/met.184.

  • Vaillancourt, K., and Coauthors, 2014: A Canadian 2050 energy outlook: Analysis with the multi-regional model TIMES-Canada. Appl. Energy, 132, 5665, doi:10.1016/j.apenergy.2014.06.072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., F. Thais, I. Tobin, F.-M. Bréon, J.-G. D. de Lavergne, A. Colette, P. Yiou, and P. M. Ruti, 2014: Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms. Nat. Commun., 5, doi:10.1038/ncomms4196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 2001: Statistical Analysis in Climate Research. Cambridge University Press, 496 pp.

  • Weisheimer, A., and T. N. Palmer, 2014: On the reliability of seasonal climate forecasts. J. Roy. Soc. Interface, 11, 20131162, doi:10.1098/rsif.2013.1162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., T. N. Palmer, and F. J. Doblas-Reyes, 2011: Assessment of representations of model uncertainty in monthly and seasonal forecast ensembles. Geophys. Res. Lett., 38, L16703, doi:10.1029/2011GL048123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd. ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • World Wind Energy Association, 2015: New record in worldwide wind installations. WWEA Bull., No. 1, 4–5. [Available online at http://www.wwindea.org/wwea-bulletin-issue-1-2015/.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2071 535 28
PDF Downloads 1353 417 29

Seasonal Climate Prediction: A New Source of Information for the Management of Wind Energy Resources

Verónica TorralbaBarcelona Supercomputing Center, Barcelona, Spain

Search for other papers by Verónica Torralba in
Current site
Google Scholar
PubMed
Close
,
Francisco J. Doblas-ReyesBarcelona Supercomputing Center, and Institució Catalana de Recerca i Estudis Avanҫats, Barcelona, Spain

Search for other papers by Francisco J. Doblas-Reyes in
Current site
Google Scholar
PubMed
Close
,
Dave MacLeodAtmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by Dave MacLeod in
Current site
Google Scholar
PubMed
Close
,
Isadora ChristelBarcelona Supercomputing Center, Barcelona, Spain

Search for other papers by Isadora Christel in
Current site
Google Scholar
PubMed
Close
, and
Melanie DavisInstitut Català de Ciències del Clima, Barcelona, Spain

Search for other papers by Melanie Davis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate predictions tailored to the wind energy sector represent an innovation in the use of climate information to better manage the future variability of wind energy resources. Wind energy users have traditionally employed a simple approach that is based on an estimate of retrospective climatological information. Instead, climate predictions can better support the balance between energy demand and supply, as well as decisions relative to the scheduling of maintenance work. One limitation for the use of the climate predictions is the bias, which has until now prevented their incorporation in wind energy models because they require variables with statistical properties that are similar to those observed. To overcome this problem, two techniques of probabilistic climate forecast bias adjustment are considered here: a simple bias correction and a calibration method. Both approaches assume that the seasonal distributions are Gaussian. These methods are linear and robust and neither requires parameter estimation—essential features for the small sample sizes of current climate forecast systems. This paper is the first to explore the impact of the necessary bias adjustment on the forecast quality of an operational seasonal forecast system, using the European Centre for Medium-Range Weather Forecasts seasonal predictions of near-surface wind speed to produce useful information for wind energy users. The results reveal to what extent the bias adjustment techniques, in particular the calibration method, are indispensable to produce statistically consistent and reliable predictions. The forecast-quality assessment shows that calibration is a fundamental requirement for high-quality climate service.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-16-0204.s1.

Corresponding author e-mail: Verónica Torralba, veronica.torralba@bsc.es

Abstract

Climate predictions tailored to the wind energy sector represent an innovation in the use of climate information to better manage the future variability of wind energy resources. Wind energy users have traditionally employed a simple approach that is based on an estimate of retrospective climatological information. Instead, climate predictions can better support the balance between energy demand and supply, as well as decisions relative to the scheduling of maintenance work. One limitation for the use of the climate predictions is the bias, which has until now prevented their incorporation in wind energy models because they require variables with statistical properties that are similar to those observed. To overcome this problem, two techniques of probabilistic climate forecast bias adjustment are considered here: a simple bias correction and a calibration method. Both approaches assume that the seasonal distributions are Gaussian. These methods are linear and robust and neither requires parameter estimation—essential features for the small sample sizes of current climate forecast systems. This paper is the first to explore the impact of the necessary bias adjustment on the forecast quality of an operational seasonal forecast system, using the European Centre for Medium-Range Weather Forecasts seasonal predictions of near-surface wind speed to produce useful information for wind energy users. The results reveal to what extent the bias adjustment techniques, in particular the calibration method, are indispensable to produce statistically consistent and reliable predictions. The forecast-quality assessment shows that calibration is a fundamental requirement for high-quality climate service.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-16-0204.s1.

Corresponding author e-mail: Verónica Torralba, veronica.torralba@bsc.es

Supplementary Materials

    • Supplemental Materials (PDF 9.18 MB)
Save