Winter Precipitation Liquid–Ice Phase Transitions Revealed with Polarimetric Radar and 2DVD Observations in Central Oklahoma

Petar Bukovčić NOAA/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Petar Bukovčić in
Current site
Google Scholar
PubMed
Close
,
Dušan Zrnić NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Dušan Zrnić in
Current site
Google Scholar
PubMed
Close
, and
Guifu Zhang School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Guifu Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations and analysis of an ice–liquid phase precipitation event, collected with an S-band polarimetric KOUN radar and a two-dimensional video disdrometer (2DVD) in central Oklahoma on 20 January 2007, are presented. Using the disdrometer measurements, precipitation is classified either as ice pellets or rain/freezing rain. The disdrometer observations showed fast-falling and slow-falling particles of similar size. The vast majority (>99%) were fast falling with observed velocities close to those of raindrops with similar sizes. In contrast to the smaller particles (<1 mm in diameter), bigger ice pellets (>1.5 mm) were relatively easy to distinguish because their shapes differ from the raindrops. The ice pellets were challenging to detect by looking at conventional polarimetric radar data because of the localized and patchy nature of the ice phase and their occurrence close to the ground. Previously published findings referred to cases in which ice pellet areas were centered on the radar location and showed a ringlike structure of enhanced differential reflectivity ZDR and reduced copolar correlation coefficient ρhv and horizontal reflectivity ZH in PPI images. In this study, a new, unconventional way of looking at polarimetric radar data is introduced: slanted vertical profiles (SVPs) at low (0°–1°) radar elevations. From the analysis of the localized and patchy structures using SVPs, the polarimetric refreezing signature, reflected in local enhancement in ZDR and reduction in ZH and ρhv, became much more evident. Model simulations of sequential drop freezing using Marshall–Palmer DSDs along with the observations suggest that preferential freezing of small drops may be responsible for the refreezing polarimetric signature, as suggested in previous studies.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Petar Bukovčić, petar.bukovcic@ou.edu

Abstract

Observations and analysis of an ice–liquid phase precipitation event, collected with an S-band polarimetric KOUN radar and a two-dimensional video disdrometer (2DVD) in central Oklahoma on 20 January 2007, are presented. Using the disdrometer measurements, precipitation is classified either as ice pellets or rain/freezing rain. The disdrometer observations showed fast-falling and slow-falling particles of similar size. The vast majority (>99%) were fast falling with observed velocities close to those of raindrops with similar sizes. In contrast to the smaller particles (<1 mm in diameter), bigger ice pellets (>1.5 mm) were relatively easy to distinguish because their shapes differ from the raindrops. The ice pellets were challenging to detect by looking at conventional polarimetric radar data because of the localized and patchy nature of the ice phase and their occurrence close to the ground. Previously published findings referred to cases in which ice pellet areas were centered on the radar location and showed a ringlike structure of enhanced differential reflectivity ZDR and reduced copolar correlation coefficient ρhv and horizontal reflectivity ZH in PPI images. In this study, a new, unconventional way of looking at polarimetric radar data is introduced: slanted vertical profiles (SVPs) at low (0°–1°) radar elevations. From the analysis of the localized and patchy structures using SVPs, the polarimetric refreezing signature, reflected in local enhancement in ZDR and reduction in ZH and ρhv, became much more evident. Model simulations of sequential drop freezing using Marshall–Palmer DSDs along with the observations suggest that preferential freezing of small drops may be responsible for the refreezing polarimetric signature, as suggested in previous studies.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Petar Bukovčić, petar.bukovcic@ou.edu
Save
  • Atlas, D., C. W. Ulbrich, F. D. Marks Jr., E. Amitai, and C. R. Williams, 1999: Systematic variation of drop size and radar-rainfall relations. J. Geophys. Res., 104, 61556169, doi:10.1029/1998JD200098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, doi:10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution–based polarimetric radar rainfall estimator. J. Appl. Meteor., 42, 652660, doi:10.1175/1520-0450(2003)042<0652:AEOADD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004a: Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Oceanic Technol., 21, 584598, doi:10.1175/1520-0426(2004)021<0584:COPRDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004b: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43, 461475, doi:10.1175/1520-0450(2004)043<0461:DSDRWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., K. Ikeda, G. Zhang, M. Schönhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, doi:10.1175/JAM2489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, doi:10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovčić, P., D. Zrnić, and G. Zhang, 2015: Convective–stratiform separation using video disdrometer observations in central Oklahoma—The Bayesian approach. Atmos. Res., 155, 176191, doi:10.1016/j.atmosres.2014.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255, doi:10.1175/2008JAMC1732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., Jr., B. C. Bernstein, C. C. Robbins, and J. W. Strapp, 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90. Wea. Forecasting, 19, 377390, doi:10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Dover Publications, Inc., 592 pp.

  • Gibson, S. R., and R. E. Stewart, 2007: Observations of ice pellets during a winter storm. Atmos. Res., 85, 6476, doi:10.1016/j.atmosres.2006.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, S. R., R. E. Stewart, and W. Henson, 2009: On the variation of ice pellet characteristics. J. Geophys. Res., 114, D09207, doi:10.1029/2008JD011260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, J. W. F., S. M. Cherry, and V. N. Bringi, 1982: Comparison of dual-polarization radar measurements of rain with ground-based disdrometer measurements. J. Appl. Meteor., 21, 252256, doi:10.1175/1520-0450(1982)021<0252:CODPRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G.-J., V. N. Bringi, R. Cifelli, D. Hudak, and W. A. Petersen, 2010: A methodology to derive radar reflectivity–liquid equivalent snow rate relations using C-band radar and a 2D video disdrometer. J. Atmos. Oceanic Technol., 27, 637651, doi:10.1175/2009JTECHA1284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G.-J., V. N. Bringi, D. Moisseev, W. A. Petersen, L. Bliven, and D. Hudak, 2015: Use of 2D-video disdrometer to derive mean density–size and Ze–SR relations: Four snow cases from the light precipitation validation experiment. Atmos. Res., 153, 3448, doi:10.1016/j.atmosres.2014.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., E. A. Brandes, and R. M. Rasmussen, 2005a: Notes and correspondence: Polarimetric radar observation of multiple freezing levels. J. Atmos. Sci., 62, 36243636, doi:10.1175/JAS3556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., E. A. Brandes, G. Zhang, and S. A. Rutledge, 2005b: Observations of winter storms with a 2-D video disdrometer and polarimetric radar. 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P11R.14. [Available online at https://ams.confex.com/ams/32Rad11Meso/webprogram/Paper97054.html.]

  • Islam, T., M. A. Rico-Ramirez, M. Thurai, and D. Han, 2012: Characteristics of raindrop spectra as normalized gamma distribution from a Joss–Waldvogel disdrometer. Atmos. Res., 108, 5773, doi:10.1016/j.atmosres.2012.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617, doi:10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. D. Schenkman, 2014: The curious case of ice pellets over middle Tennessee on 1 March 2014. J. Oper. Meteor., 2, 209213, doi:10.15191/nwajom.2014.0217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, H. D. Reeves, and T. J. Schuur, 2013: A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, doi:10.1175/JAMC-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagumo, N., and Y. Fujiyoshi, 2015: Microphysical properties of slow-falling and fast-falling ice pellets formed by freezing associated with evaporative cooling. Mon. Wea. Rev., 143, 43764392, doi:10.1175/MWR-D-15-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nešpor, V., W. F. Krajewski, and A. Kruger, 2000: Wind-induced error of raindrop size distribution measurement using a two-dimensional video disdrometer. J. Atmos. Oceanic Technol., 17, 14831492, doi:10.1175/1520-0426(2000)017<1483:WIEORS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, S., X. Jia, J. Sang, X. Liu, C. Lu, and Y. Liu, 2010: Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains. J. Appl. Meteor. Climatol., 49, 632645, doi:10.1175/2009JAMC2208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raga, G. B., R. E. Stewart, and N. R. Donaldson, 1991: Microphysical characteristics through the melting region of a midlatitude winter storm. J. Atmos. Sci., 48, 843855, doi:10.1175/1520-0469(1991)048<0843:MCTTMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., G. Zhang, S. Luchs, and L. Ryzhkova, 2008: Polarimetric characteristics of snow measured by radar and 2D video disdrometer. Proc. Fifth European Conf. on Radar in Meteorology and Hydrology, Helsinki, Finland, European Organisation for the Exploitation of Meteorological Satellites, 4 pp.

  • Ryzhkov, A., M. Pinsky, A. Pokrovsky, and A. Khain, 2011a: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, doi:10.1175/2010JAMC2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., H. D. Reeves, T. J. Schuur, M. R. Kumjian, and D. S. Zrnic, 2011b: Investigations of polarimetric radar signatures in winter storms and their relation to aircraft icing and freezing rain. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 197. [Available online at https://ams.confex.com/ams/35Radar/webprogram/Paper191245.html.]

  • Ryzhkov, A., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, doi:10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., A. V. Ryzhkov, D. S. Zrnić, and M. Schönhuber, 2001: Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J. Appl. Meteor., 40, 10191034, doi:10.1175/1520-0450(2001)040<1019:DSDMBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., S. Lang, X. Zeng, S. Shige, and Y. Takayabu, 2010: Relating convective and stratiform rain to latent heating. J. Climate, 23, 18741893, doi:10.1175/2009JCLI3278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., G. J. Huang, V. N. Bringi, W. L. Randeu, and M. Schönhuber, 2007: Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Oceanic Technol., 24, 10191032, doi:10.1175/JTECH2051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., C. R. Williams, and V. N. Bringi, 2014: Examining the correlations between drop size distribution parameters using data from two side-by-side 2D-video disdrometers. Atmos. Res., 144, 95110, doi:10.1016/j.atmosres.2014.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, doi:10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Schultz, A. V. Ryzhkov, and R. L. Holle, 2001: Multiscale structure and evolution of an Oklahoma winter precipitation event. Mon. Wea. Rev., 129, 486501, doi:10.1175/1520-0493(2001)129<0486:MSAEOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., and Coauthors, 2014: Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters. J. Appl. Meteor. Climatol., 53, 12821296, doi:10.1175/JAMC-D-13-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., D. E. Kingsmill, L. B. Nance, and M. Löffler-Mang, 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 14501464, doi:10.1175/JAM2406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., D. A. Stark, M. T. Bryant, B. A. Colle, L. B. Perry, J. Blaes, J. Wolfe, and G. Peters, 2008: Forecasting and characterization of mixed precipitation events using the MicroRainRadar. Proc. Fifth European Conf. on Radar in Meteorology and Hydrology, Helsinki, Finland, European Organisation for the Exploitation of Meteorological Satellites. [Available online at http://www4.ncsu.edu/~seyuter/pdfs/080505YuteretalERAD.pdf.]

  • Zhang, G., 2016: Weather Radar Polarimetry. CRC Press, 304 pp.

  • Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830841, doi:10.1109/36.917906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, E. Brandes, R. Meneghini, and T. Kozu, 2003: The shape–slope relation in observed gamma raindrop size distributions: Statistical error or useful information? J. Atmos. Oceanic Technol., 20, 11061119, doi:10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Sun, and E. A. Brandes, 2006: Improving parameterization of rain microphysics with disdrometer and radar observations. J. Atmos. Sci., 63, 12731290, doi:10.1175/JAS3680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., M. Xue, Q. Cao, and D. Dawson, 2008: Diagnosing the intercept parameter for exponential raindrop size distribution based on video disdrometer observations: Model development. J. Appl. Meteor. Climatol., 47, 29832992, doi:10.1175/2008JAMC1876.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., S. Luchs, A. Ryzhkov, M. Xue, L. Ryzhkova, and Q. Cao, 2011: Winter precipitation microphysics characterized by polarimetric radar and video disdrometer observations in central Oklahoma. J. Appl. Meteor. Climatol., 50, 15581570, doi:10.1175/2011JAMC2343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 637 160 10
PDF Downloads 403 88 3