• Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. C. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 10731086, doi:10.1175/2007JTECHA1053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E., and G. G. Mace, 2014: Cloud properties and radiative effects of the Asian summer monsoon derived from A-Train data. J. Geophys. Res. Atmos., 119, 94929508, doi:10.1002/2014JD021458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., D. L. Hlavka, E. J. Welton, C. J. Flynn, D. D. Turner, J. D. Spinhirne, V. S. Scott, and I. H. Hwang, 2002: Full-time, eye-safe cloud and aerosol lidar observation at Atmosphere Radiation Measurement program sites: Instrument and data processing. J. Atmos. Oceanic Technol., 19, 431442, doi:10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., K. Sassen, and E. J. Welton, 2008: Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles. J. Atmos. Oceanic Technol., 25, 685700, doi:10.1175/2007JTECHA1034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., M. A. Vaughan, M. Oo, R. E. Holz, J. R. Lewis, and E. J. Welton, 2015: Distinguishing cirrus cloud presence in autonomous lidar measurements. Atmos. Meas. Tech., 8, 435449, doi:10.5194/amt-8-435-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., S. Lolli, J. R. Lewis, Y. Gu, and E. J. Welton, 2016: Daytime cirrus cloud top-of-atmosphere radiative forcing properties at a midlatitude site and their global consequence. J. Appl. Meteor. Climatol., 55, 16671679, doi:10.1175/JAMC-D-15-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chew, B. N., J. R. Campbell, J. S. Reid, D. M. Giles, E. J. Welton, S. V. Salinas, and S. C. Liew, 2011: Tropical cirrus cloud contamination in sun photometer data. Atmos. Environ., 45, 67246731, doi:10.1016/j.atmosenv.2011.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156, doi:10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garnier, A., J. Pelon, M. A. Vaughan, D. M. Winker, C. R. Trepte, and P. Dubuisson, 2015: Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans. Atmos. Meas. Tech., 8, 27592774, doi:10.5194/amt-8-2759-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, Y., J. Farrara, K. N. Liou, and C. R. Mechoso, 2003: Parameterization of cloud–radiation processes in the UCLA general circulation model. J. Climate, 16, 33573370, doi:10.1175/1520-0442(2003)016<3357:POCPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, Y., K. N. Liou, S. C. Ou, and R. Fovell, 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119, doi:10.1029/2010JD014574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., D. Winker, M. Avery, M. Vaughan, G. Diskin, M. Deng, V. Mitev, and R. Matthey, 2014: Relationships between ice water content and volume extinction coefficient from in situ observations for temperatures from 0° to −86°C: Implications for spaceborne lidar retrievals. J. Appl. Meteor. Climatol., 53, 479505, doi:10.1175/JAMC-D-13-087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, M., and S. Liang, 2006: An improved land surface emissivity parameter for land surface models using global remote sensing observations. J. Climate, 19, 28672881, doi:10.1175/JCLI3720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Z., T. P. Charlock, W. L. Smith Jr., and K. Rutledge, 2004: A parameterization of ocean surface albedo. Geophys. Res. Lett., 31, L22301, doi:10.1029/2004GL021180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. R., J. R. Campbell, E. J. Welton, S. A. Stewart, and P. C. Haftings, 2016: Overview of MPLNET, version 3, cloud detection. J. Atmos. Oceanic Technol., 33, 21132134, doi:10.1175/JTECH-D-15-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lolli, S., E. J. Welton, and J. R. Campbell 2013: Evaluating light rain drop size estimates from multiwavelength micropulse lidar network profiling. J. Atmos. Oceanic Technol., 30, 27982807, doi:10.1175/JTECH-D-13-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2014: Reconciling ground-based and space-based estimates of the frequency of occurrence and radiative effect of clouds around Darwin, Australia. J. Appl. Meteor. Climatol., 53, 456478, doi:10.1175/JAMC-D-13-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31, 12751285, doi:10.1175/1520-0450(1992)031<1275:STCLDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and J. R. Campbell, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties. J. Atmos. Sci., 58, 481496, doi:10.1175/1520-0469(2001)058<0481:AMCCCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., J. R. Campbell, J. Zhu, P. Kollias, M. Shupe, and C. Williams, 2005: Lidar and triple-wavelength Doppler radar measurements of the melting layer: A revised model for dark- and brightband phenomena. J. Appl. Meteor., 44, 301312, doi:10.1175/JAM-2197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiki, T., C. Kodama, M. Satoh, T. Hashino, Y. Hagihara, and H. Okamoto, 2015: Vertical grid spacing necessary for simulating tropical cirrus clouds with a high-resolution atmospheric general circulation model. Geophys. Res. Lett., 42, 41504157, doi:10.1002/2015GL064282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and P. J. Webster, 1981: Clouds and climate: Sensitivity of simple systems. J. Atmos. Sci., 38, 235247, doi:10.1175/1520-0469(1981)038<0235:CACSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strahler, A. H., and Coauthors, 1999: MODIS BRDF/albedo product: Algorithm Theoretical Basis Document. NASA EOS-MODIS Doc. ATBD-MOD-09, version 5.0, 53 pp. [Available online at https://modis.gsfc.nasa.gov/data/atbd/atbd_mod09.pdf.]

  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites. Bull. Amer. Meteor. Soc., 94, 10311049, doi:10.1175/BAMS-D-12-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorsen, T. J., Q. Fu, and J. Comstock, 2011: Comparison of the CALIPSO satellite and ground‐based observations of cirrus clouds at the ARM TWP sites. J. Geophys. Res., 116, D21203, doi:10.1029/2011JD015970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D., and Coauthors, 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welton, E. J., J. R. Campbell, J. D. Spinhirne, and V. S. Scott, 2001: Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems. Lidar Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, T. Itabe, and N. Sugimoto, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4153), 151–158.

  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, doi:10.1175/2010BAMS3009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105, 46994718, doi:10.1029/1999JD900755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mischenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44, 55125523, doi:10.1364/AO.44.005512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, doi:10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 420 148 12
PDF Downloads 245 58 4

Daytime Top-of-the-Atmosphere Cirrus Cloud Radiative Forcing Properties at Singapore

Simone Lolli Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland
Consiglio Nazionale Delle Ricerche, Istituto di Metodologie per l’Analisi Ambientale, Potenza, Italy

Search for other papers by Simone Lolli in
Current site
Google Scholar
PubMed
Close
,
James R. Campbell Naval Research Laboratory, Monterey, California

Search for other papers by James R. Campbell in
Current site
Google Scholar
PubMed
Close
,
Jasper R. Lewis Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Jasper R. Lewis in
Current site
Google Scholar
PubMed
Close
,
Yu Gu University of California, Los Angeles, Los Angeles, California

Search for other papers by Yu Gu in
Current site
Google Scholar
PubMed
Close
,
Jared W. Marquis University of North Dakota, Grand Forks, North Dakota

Search for other papers by Jared W. Marquis in
Current site
Google Scholar
PubMed
Close
,
Boon Ning Chew Meteorological Service Singapore, Singapore

Search for other papers by Boon Ning Chew in
Current site
Google Scholar
PubMed
Close
,
Soo-Chin Liew Centre for Remote Imaging Sensing and Processing, National University of Singapore, Singapore

Search for other papers by Soo-Chin Liew in
Current site
Google Scholar
PubMed
Close
,
Santo V. Salinas Centre for Remote Imaging Sensing and Processing, National University of Singapore, Singapore

Search for other papers by Santo V. Salinas in
Current site
Google Scholar
PubMed
Close
, and
Ellsworth J. Welton NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ellsworth J. Welton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Daytime top-of-the-atmosphere (TOA) cirrus cloud radiative forcing (CRF) is estimated for cirrus clouds observed in ground-based lidar observations at Singapore in 2010 and 2011. Estimates are derived both over land and water to simulate conditions over the broader Maritime Continent archipelago of Southeast Asia. Based on bookend constraints of the lidar extinction-to-backscatter ratio (20 and 30 sr), used to solve extinction and initialize corresponding radiative transfer model simulations, relative daytime TOA CRF is estimated at 2.858–3.370 W m−2 in 2010 (both 20 and 30 sr, respectively) and 3.078–3.329 W m−2 in 2011 and over water between −0.094 and 0.541 W m−2 in 2010 and −0.598 and 0.433 W m−2 in 2011 (both 30 and 20 sr, respectively). After normalizing these estimates for an approximately 80% local satellite-estimated cirrus cloud occurrence rate, they reduce in absolute daytime terms to 2.198–2.592 W m−2 in 2010 and 2.368–2.561 W m−2 in 2011 over land and −0.072–0.416 W m−2 in 2010 and −0.460–0.333 W m−2 in 2011 over water. These annual estimates are mostly consistent despite a tendency toward lower relative cloud-top heights in 2011. Uncertainties are described. Estimates support the open hypothesis of a meridional hemispheric gradient in cirrus cloud daytime TOA CRF globally, varying from positive near the equator to presumably negative approaching the non-ice-covered poles. They help expand upon the paradigm, however, by conceptualizing differences zonally between overland and overwater forcing that differ significantly. More global oceans are likely subject to negative daytime TOA CRF than previously implied.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Simone Lolli, simone.lolli@nasa.gov

Abstract

Daytime top-of-the-atmosphere (TOA) cirrus cloud radiative forcing (CRF) is estimated for cirrus clouds observed in ground-based lidar observations at Singapore in 2010 and 2011. Estimates are derived both over land and water to simulate conditions over the broader Maritime Continent archipelago of Southeast Asia. Based on bookend constraints of the lidar extinction-to-backscatter ratio (20 and 30 sr), used to solve extinction and initialize corresponding radiative transfer model simulations, relative daytime TOA CRF is estimated at 2.858–3.370 W m−2 in 2010 (both 20 and 30 sr, respectively) and 3.078–3.329 W m−2 in 2011 and over water between −0.094 and 0.541 W m−2 in 2010 and −0.598 and 0.433 W m−2 in 2011 (both 30 and 20 sr, respectively). After normalizing these estimates for an approximately 80% local satellite-estimated cirrus cloud occurrence rate, they reduce in absolute daytime terms to 2.198–2.592 W m−2 in 2010 and 2.368–2.561 W m−2 in 2011 over land and −0.072–0.416 W m−2 in 2010 and −0.460–0.333 W m−2 in 2011 over water. These annual estimates are mostly consistent despite a tendency toward lower relative cloud-top heights in 2011. Uncertainties are described. Estimates support the open hypothesis of a meridional hemispheric gradient in cirrus cloud daytime TOA CRF globally, varying from positive near the equator to presumably negative approaching the non-ice-covered poles. They help expand upon the paradigm, however, by conceptualizing differences zonally between overland and overwater forcing that differ significantly. More global oceans are likely subject to negative daytime TOA CRF than previously implied.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Simone Lolli, simone.lolli@nasa.gov
Save