• Barnes, L. R., E. C. Gruntfest, M. H. Hayden, D. M. Schultz, and C. Benight, 2007: False alarms and close calls: A conceptual model of warning accuracy. Wea. Forecasting, 22, 11401147, doi:10.1175/WAF1031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, S., R. Knuteson, H. Revercomb, D. Tobin, and D. Turner, 2010: An assessment of the absolute accuracy of the Atmospheric Infrared Sounder v5 precipitable water vapor product at tropical, midlatitude, and Arctic ground-truth sites: September 2002 through August 2008. J. Geophys. Res., 115, D17310, doi:10.1029/2009JD013139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., and Coauthors, 2011: The ERA-Interim archive version 2.0. European Centre for Medium-Range Weather Forecasts ERA Rep. 1, 23 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2011/8174-era-interim-archive-version-20.pdf.]

  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res., 97, 15 78715 801, doi:10.1029/92JD01517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., 1998: Assessing the vertical distribution of convective available potential energy. Wea. Forecasting, 13, 870877, doi:10.1175/1520-0434(1998)013<0870:ATVDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Botes, D., J. R. Mecikalski, and G. J. Jedlovec, 2012: Atmospheric Infrared Sounder (AIRS) sounding evaluation and analysis of the pre-convective environment. J. Geophys. Res., 117, D09205, doi:10.1029/2011JD016996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breznitz, S., 1984: The false alarm effect. Cry Wolf: The Psychology of False Alarms, Lawrence Erlbaum Associates, 9–16.

  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, doi:10.1175/BAMS-87-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheinet, S., A. Beljaars, M. Köhler, J.-J. Morcrette, and P. Viterbo, 2005: Assessing physical processes in the ECMWF model forecasts using the ARM SGP observations. European Centre for Medium-Range Weather Forecasts ARM Rep. 1, 25 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2005/8658-assessing-physical-processes-ecmwf-model-forecasts-using-arm-sgp-observations.pdf.]

  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and D. T. Lindsey, 2014: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639653, doi:10.1175/WAF-D-13-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, G., 2007: History of the NOAA satellite program. J. Appl. Remote Sens., 1, 012504, doi:10.1117/1.2642347.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. McMillin, E. Maddy, W. Wolf, L. Zhou, and X. Liu, 2006: Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111, D09S15, doi:10.1029/2005JD006116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 2004: Weather forecasting by humans—Heuristics and decision making. Wea. Forecasting, 19, 11151126, doi:10.1175/WAF-821.1.

  • Doswell, C. A., III, and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625629, doi:10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2009: ERA-Interim project. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 12 January 2015, doi:10.5065/D6CR5RD9.

    • Crossref
    • Export Citation
  • Fetzer, E., and Coauthors, 2003: AIRS/AMSU/HSB validation. IEEE Trans. Geosci. Remote Sens., 41, 418431, doi:10.1109/TGRS.2002.808293.

  • Fetzer, E., B. H. Lambrigtsen, A. Eldering, H. H. Aumann, and M. T. Chahine, 2006: Biases in total precipitable water vapor climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer. J. Geophys. Res., 111, D09S16, doi:10.1029/2005JD006598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, M. D., H. Kilcoyne, H. Cikanek, and A. Mehta, 2013: Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system. J. Geophys. Res. Atmos., 118, 13 46313 475, doi:10.1002/2013JD020389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golden, J., and C. Adams, 2000: The tornado problem: Forecast, warnings, and response. Nat. Hazards Rev., 1, 107118, doi:10.1061/(ASCE)1527-6988(2000)1:2(107).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., F. H. Blair, S. E. Bisson, and D. D. Turner, 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37, 49794990, doi:10.1364/AO.37.004979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halbert, K. T., W. G. Blumberg, and P. T. Marsh, 2015: SHARPpy: Fueling the Python cult. Fifth Symp. on Advances in Modeling and Analysis Using Python, Phoenix, AZ, Amer. Meteor. Soc., 402. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper270233.html.]

  • Hart, J. A., J. Whistler, R. Lindsay, and M. Kay, 1999: NSHARP, version 3.10. National Centers for Environmental Prediction Storm Prediction Center Rep., 33 pp.

  • Hilton, F., and Coauthors, 2012: Hyperspectral Earth observation from IASI: Five years of accomplishments. Bull. Amer. Meteor. Soc., 93, 347370, doi:10.1175/BAMS-D-11-00027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, doi:10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddy, E. S., and C. D. Barnet, 2008: Vertical resolution estimates in version 5 of AIRS operational retrievals. IEEE Trans. Geosci. Remote Sens., 46, 23752384, doi:10.1109/TGRS.2008.917498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNally, A. P., P. D. Watts, J. A. Smith, R. Engelen, G. A. Kelly, J. N. Thépaut, and M. Matricardi, 2006: The assimilation of AIRS radiance data at ECMWF. Quart. J. Roy. Meteor. Soc., 132, 935958, doi:10.1256/qj.04.171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNulty, R. P., 1995: Severe and convective weather: A central region forecasting challenge. Wea. Forecasting, 10, 187202, doi:10.1175/1520-0434(1995)010<0187:SACWAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., H. Vömel, D. N. Whiteman, and T. Leblanc, 2009: Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J. Geophys. Res., 114, D11305, doi:10.1029/2008JD011565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and J. S. A. Green, 1972: The propagation and transfer properties of steady convective overturning in shear. Quart. J. Roy. Meteor. Soc., 98, 336352, doi:10.1002/qj.49709841607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2003: Aqua: An Earth-observing satellite mission to examine water and other climate variables. IEEE Trans. Geosci. Remote Sens., 41, 173183, doi:10.1109/TGRS.2002.808319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Revercomb, H. E., and Coauthors, 2003: The ARM program’s water vapor intensive observation periods. Bull. Amer. Meteor. Soc., 84, 217236, doi:10.1175/BAMS-84-2-217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemann-Campe, K., K. Fraedrich, and F. Lunkeit, 2009: Global climatology of convective available potential energy (CAPE) and convective inhibition (CIN) in ERA-40 reanalysis. Atmos. Res., 93, 534545, doi:10.1016/j.atmosres.2008.09.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roman, J., R. Knuteson, T. August, T. Hultberg, S. Ackerman, and H. Revercomb, 2016: A global assessment of NASA AIRS v6 and EUMETSAT IASI v6 precipitable water vapor using ground-based GPS SuomiNet stations. J. Geophys. Res. Atmos., 121, 89258948, doi:10.1002/2016JD024806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothfusz, L., C. Karstens, and D. Hilderband, 2014: Next-generation severe weather forecasting and communication. Eos, Trans. Amer. Geophys. Union, 95, 325326, doi:10.1002/2014EO360001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1986: Temperatures of air parcels lifted from the surface: Background, application and nomograms. Wea. Forecasting, 1, 190205, doi:10.1175/1520-0434(1986)001<0190:TOAPLF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., Sr., and Coauthors, 2009: Technical note: Evolution, current capabilities, and future advances in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere. Atmos. Chem. Phys., 9, 55635574, doi:10.5194/acp-9-5563-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., Sr., E. Weisz, S. V. Kirev, D. K. Zhou, Z. Li, and E. E. Borbas, 2012: Dual-regression retrieval algorithm for real-time processing of satellite ultraspectral radiances. J. Appl. Meteor. Climatol., 51, 14551476, doi:10.1175/JAMC-D-11-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499, doi:10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 12011221, doi:10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. D. Barnet, and J. M. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390409, doi:10.1109/TGRS.2002.808236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., J. M. Blaisdell, L. Iredell, and F. Keita, 2011: Improved temperature sounding and quality control methodology using AIRS/AMSU data: The AIRS science team version 5 retrieval algorithm. IEEE Trans. Geosci. Remote Sens., 49, 883907, doi:10.1109/TGRS.2010.2070508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., J. M. Blaisdell, and L. Iredell, 2014: Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: The Atmospheric Infrared Sounder science team version-6 retrieval algorithm. J. Appl. Remote Sens., 8, 084994, doi:10.1117/1.JRS.8.084994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B., E. J. Fetzer, B. H. Kahn, J. Teixeira, E. Manning, and T. Hearty, 2013: Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology. J. Geophys. Res. Atmos., 118, 114134, doi:10.1029/2012JD018607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., and Coauthors, 2006: Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res., 111, D09S14, doi:10.1029/2005JD006103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and J. E. M. Goldsmith, 1999: Twenty-four-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program’s 1996 and 1997 water vapor intensive observation periods. J. Atmos. Oceanic Technol., 16, 10621076, doi:10.1175/1520-0426(1999)016<1062:TFHRLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisz, E., W. L. Smith Sr., and N. Smith, 2013: Advances in simultaneous atmospheric profile and cloud parameter regression based retrieval from high-spectral resolution radiance measurements. J. Geophys. Res. Atmos., 118, 64336443, doi:10.1002/jgrd.50521.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 654 249 32
PDF Downloads 656 274 17

Comparison of Satellite-, Model-, and Radiosonde-Derived Convective Available Potential Energy in the Southern Great Plains Region

Jessica GartzkeDepartment of Atmospheric and Oceanic Sciences, and Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Jessica Gartzke in
Current site
Google Scholar
PubMed
Close
,
Robert KnutesonSpace Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Robert Knuteson in
Current site
Google Scholar
PubMed
Close
,
Grace PrzybylSpace Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Grace Przybyl in
Current site
Google Scholar
PubMed
Close
,
Steven AckermanDepartment of Atmospheric and Oceanic Sciences, and Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Steven Ackerman in
Current site
Google Scholar
PubMed
Close
, and
Henry RevercombSpace Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Henry Revercomb in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Convective available potential energy (CAPE) is one of the physical quantities used by operational meteorologists when issuing severe-weather convective watches and warnings. Recent advances in satellite technology could provide timely observations of atmospheric temperature and water vapor profiles over the continental United States, but only limited validation exists in the literature to characterize uncertainties in CAPE derived from the new satellite sensors. In this study, 10 years of Vaisala, Inc., RS92 radiosonde observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site were matched to overpasses of the NASA Aqua satellite that were made from January 2005 through December 2014. Vertical profiles of temperature and water vapor from the NASA Atmospheric Infrared Sounder (AIRS) were extracted in a region surrounding the DOE ARM SGP central facility near Lamont, Oklahoma. Surface-based CAPE was computed using software consistent with methods used by the National Weather Service Storm Prediction Center. The one-to-one correspondence of the AIRS-derived CAPE with the ARM-radiosonde-derived CAPE has a correlation coefficient of only 0.34. Substitution of the ARM-radiosonde surface values into the AIRS profiles improves the correlation to 0.95. The use of AIRS profiles above the surface level provides surface-based CAPE values that are very similar to those computed from Vaisala radiosondes. These results suggest that a merging of surface observations with satellite-derived thermodynamic profiles could make better use of the satellite spatial coverage and temporal sampling for estimation of CAPE in near–real time.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jessica Gartzke, jessicagartzke@gmail.com

Abstract

Convective available potential energy (CAPE) is one of the physical quantities used by operational meteorologists when issuing severe-weather convective watches and warnings. Recent advances in satellite technology could provide timely observations of atmospheric temperature and water vapor profiles over the continental United States, but only limited validation exists in the literature to characterize uncertainties in CAPE derived from the new satellite sensors. In this study, 10 years of Vaisala, Inc., RS92 radiosonde observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site were matched to overpasses of the NASA Aqua satellite that were made from January 2005 through December 2014. Vertical profiles of temperature and water vapor from the NASA Atmospheric Infrared Sounder (AIRS) were extracted in a region surrounding the DOE ARM SGP central facility near Lamont, Oklahoma. Surface-based CAPE was computed using software consistent with methods used by the National Weather Service Storm Prediction Center. The one-to-one correspondence of the AIRS-derived CAPE with the ARM-radiosonde-derived CAPE has a correlation coefficient of only 0.34. Substitution of the ARM-radiosonde surface values into the AIRS profiles improves the correlation to 0.95. The use of AIRS profiles above the surface level provides surface-based CAPE values that are very similar to those computed from Vaisala radiosondes. These results suggest that a merging of surface observations with satellite-derived thermodynamic profiles could make better use of the satellite spatial coverage and temporal sampling for estimation of CAPE in near–real time.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jessica Gartzke, jessicagartzke@gmail.com
Save