• Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Argüeso, D., J. M. Hidalgo-Muñoz, S. R. Gámiz-Fortis, M. J. Esteban-Parra, and Y. Castro-Díez, 2012: Evaluation of WRF mean and extreme precipitation over Spain: Present climate (1970–99). J. Climate, 25, 48834897, doi:10.1175/JCLI-D-11-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and M. K. Tippett, 2013: Predictions of Nino3.4 SST in CFSv1 and CFSv2: A diagnostic comparison. Climate Dyn., 41, 16151633, doi:10.1007/s00382-013-1845-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, doi:10.1038/nature14956.

  • Brisson, E., K. Van Weverberg, M. Demuzere, A. Devis, S. Saeed, and M. Stengel, and N. P. M. van Lipzig, 2016: How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics? Climate Dyn., 47, 30433061, doi:10.1007/s00382-016-3012-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P., H.-N. S. Chin, D. C. Bader, and G. Bala, 2009: Evaluation of a WRF dynamical downscaling simulation over California. Climatic Change, 95, 499521, doi:10.1007/s10584-009-9583-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., S. L. Guo, C. Y. Xu, and V. P. Singh, 2007: Historical temporal trends of hydroclimatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. J. Hydrol., 344, 171184, doi:10.1016/j.jhydrol.2007.06.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cretat, J., B. Pohl, Y. Richard, and P. Drobinski, 2012: Uncertainties in simulating regional climate of southern Africa: Sensitivity to physical parameterizations using WRF. Climate Dyn., 38, 613634, doi:10.1007/s00382-011-1055-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, J.-X., S.-Z. Xu, R.-Q. Wang, and H.-Y. Zhang, 2007: A study on meteorological and hydrological characteristics of autumnal flood in the Hanjiang River in 2005. Torrential Rain Disasters, 26, 289294.

    • Search Google Scholar
    • Export Citation
  • Di Luca, A., R. D. Elia, and R. Laprise, 2012: Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations. Climate Dyn., 38, 12291247, doi:10.1007/s00382-011-1068-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Climate Dyn., 39, 399418, doi:10.1007/s00382-011-1127-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fonseca, R. M., T. Zhang, and K. T. Yong, 2015: Improved simulation of precipitation in the tropics using a modified BMJ scheme in the WRF Model. Geosci. Model Dev., 8, 29152928, doi:10.5194/gmd-8-2915-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, W. Wang, J. Zhu, and C. Wen, 2013: Prediction skill of monthly SST in the North Atlantic Ocean in NCEP Climate Forecast System version 2. Climate Dyn., 40, 27452759, doi:10.1007/s00382-012-1431-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2000: Comments on “Development and evaluation of a convection scheme for use in climate models.” J. Atmos. Sci., 57, 3686, doi:10.1175/1520-0469(2000)057<3686:CODAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X. W., S. Yang, Y. Q. Li, A. Kumar, X. W. Liu, Z. Y. Zuo, and B. Jha, 2013: Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP Climate Forecast System version 2. J. Climate, 26, 37083727, doi:10.1175/JCLI-D-12-00437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and J. Sanjay, 2003: A new approach to the cumulus parameterization issue. Tellus, 55A, 275300, doi:10.1034/j.1600-0870.2003.00021.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S., W. K. Tao, J. Simpson, and B. Ferrier, 2003: Modeling of convective–stratiform precipitation processes: Sensitivity to partition methods. J. Appl. Meteor., 42, 505527, doi:10.1175/1520-0450(2003)042<0505:MOCSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, Y., and Coauthors, 2014: Evaluating skill of seasonal precipitation and temperature predictions of NCEP CFSv2 forecasts over 17 hydroclimatic regions in China. J. Hydrometeor., 15, 15461559, doi:10.1175/JHM-D-13-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. Z., L. Li, A. Dai, and K. E. Kunkel, 2004: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31, L24208, doi:10.1029/2004GL021054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. Z., M. Xu, K. E. Kunkel, G. A. Grell, and J. S. Kain, 2007: Regional climate model simulation of U.S.–Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. J. Climate, 20, 52015207, doi:10.1175/JCLI4306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., D.-L. Zhang, and B. Wang, 2008: Daily to submonthly weather and climate characteristics of the summer 1998 extreme rainfall over the Yangtze River basin. J. Geophys. Res., 113, D22101, doi:10.1029/2008JD010072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, L., W. Tang, Z. Lin, and E. F. Wood, 2013: Evaluation of summer temperature and precipitation predictions from NCEP CFSv2 retrospective forecast over China. Climate Dyn., 41, 22132230, doi:10.1007/s00382-013-1927-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102, 373394, doi:10.1002/qj.49710243208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, D. S. R., C. H. Ho, and J. H. Kim, 2014: Growing threat of intense tropical cyclones to East Asia over the period 1977–2010. Environ. Res. Lett., 9, 014008, doi:10.1088/1748-9326/9/1/014008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pei, L. S., N. Moore, S. Y. Zhong, L. F. Luo, D. W. Hyndman, W. E. Heilman, and Z. Q. Gao, 2014: WRF Model sensitivity to land surface model and cumulus parameterization under short-term climate extremes over the southern Great Plains of the United States. J. Climate, 27, 77037724, doi:10.1175/JCLI-D-14-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez, J. C., J. P. Díaz, A. González, J. Expósito, F. Rivera-López, and D. Taima, 2014: Evaluation of WRF parameterizations for dynamical downscaling in the Canary Islands. J. Climate, 27, 56115631, doi:10.1175/JCLI-D-13-00458.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohl, B., and H. Douville, 2011: Diagnosing GCM errors over West Africa using relaxation experiments. Part II: Intraseasonal variability and African easterly waves. Climate Dyn., 37, 13131334, doi:10.1007/s00382-011-1106-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Stéfanon, M., P. Drobinski, F. D’Andrea, C. Lebeaupin-Brossier, and S. Bastin, 2013: Soil moisture-temperature feedbacks at meso-scale during summer heat waves over western Europe. Climate Dyn., 42, 13091324, doi:10.1007/s00382-013-1794-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z. W., P. M. Zhai, and H. T. Zhang, 2003: Variation of drought over northern China during 1950–2000. J. Geogr. Sci., 13, 480487, doi:10.1007/BF02837887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, doi:10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P. P., A. Yatagai, M. Y. Chen, T. Hayasaka, Y. Fukushima, C. M. Liu, and S. Yang, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, doi:10.1175/JHM583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y. K., Z. Janjic, J. Dudhia, R. Vasic, and F. De Sales, 2014: A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmos. Res., 147–148, 6885, doi:10.1016/j.atmosres.2014.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, C., T. Tozuka, W. A. Landman, and T. Yamagata, 2014: Dynamical seasonal prediction of southern African summer precipitation. Climate Dyn., 42, 33573374, doi:10.1007/s00382-013-1923-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Z., Y. Hu, J. Min, and H. Xu, 2007: Numerical experiments on the spin-up time for seasonal-scale regional climate modeling. Acta Meteor. Sin., 21, 409419.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 299 69 3
PDF Downloads 231 54 1

High-Resolution Dynamical Downscaling of Seasonal Precipitation Forecasts for the Hanjiang Basin in China Using the Weather Research and Forecasting Model

Yuan LiCollege of Hydrology and Water Resources, Hohai University, Nanjing, China

Search for other papers by Yuan Li in
Current site
Google Scholar
PubMed
Close
,
Guihua LuCollege of Hydrology and Water Resources, Hohai University, Nanjing, China

Search for other papers by Guihua Lu in
Current site
Google Scholar
PubMed
Close
,
Zhiyong WuCollege of Hydrology and Water Resources, Hohai University, Nanjing, China

Search for other papers by Zhiyong Wu in
Current site
Google Scholar
PubMed
Close
,
Hai HeCollege of Hydrology and Water Resources, Hohai University, Nanjing, China

Search for other papers by Hai He in
Current site
Google Scholar
PubMed
Close
, and
Jian HeJiangsu Water Resources Department, Nanjing, China

Search for other papers by Jian He in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Management of water resources may benefit from seasonal precipitation forecasts, but for obtaining high enough resolution, dynamical downscaling is necessary. This study investigated the downscaling capability of the Weather Research and Forecasting (WRF) Model ARW, version 3.5, on seasonal precipitation forecasts for the Hanjiang basin in China during 2001–09, which was the water source of the middle route of the South-to-North Water Diversion Project (SNWDP). The WRF Model is forced by the National Centers for Environmental Prediction Operational Climate Forecast System, version 2 (CFSv2), and it performs at a high horizontal resolution of 10 km with four selected convection schemes. The National Oceanic and Atmospheric Administration’s Climate Prediction Center global daily precipitation data were employed to evaluate the WRF Model on multiple scales. On average, when large biases were removed, the WRF Model slightly outperformed the CFSv2 in all seasons, especially summer. In particular, the Kain–Fritsch convective scheme performed best in summer, whereas little difference was found in winter. The WRF Model showed similar results in monthly precipitation, but no time-dependent characteristics were observed for all months. The spatial anomaly correlation coefficient showed greater uncertainty than the bias and the temporal correlation coefficient. In addition, the performance of the WRF Model showed considerable regional variations. The upper basin always showed better agreement with observations than did the middle and lower parts of the basin. A comparison of the forecast and observed daily precipitation revealed that the WRF Model can provide more accurate extreme precipitation information than the CFSv2.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiyong Wu, wzyhhu@gmail.com

Abstract

Management of water resources may benefit from seasonal precipitation forecasts, but for obtaining high enough resolution, dynamical downscaling is necessary. This study investigated the downscaling capability of the Weather Research and Forecasting (WRF) Model ARW, version 3.5, on seasonal precipitation forecasts for the Hanjiang basin in China during 2001–09, which was the water source of the middle route of the South-to-North Water Diversion Project (SNWDP). The WRF Model is forced by the National Centers for Environmental Prediction Operational Climate Forecast System, version 2 (CFSv2), and it performs at a high horizontal resolution of 10 km with four selected convection schemes. The National Oceanic and Atmospheric Administration’s Climate Prediction Center global daily precipitation data were employed to evaluate the WRF Model on multiple scales. On average, when large biases were removed, the WRF Model slightly outperformed the CFSv2 in all seasons, especially summer. In particular, the Kain–Fritsch convective scheme performed best in summer, whereas little difference was found in winter. The WRF Model showed similar results in monthly precipitation, but no time-dependent characteristics were observed for all months. The spatial anomaly correlation coefficient showed greater uncertainty than the bias and the temporal correlation coefficient. In addition, the performance of the WRF Model showed considerable regional variations. The upper basin always showed better agreement with observations than did the middle and lower parts of the basin. A comparison of the forecast and observed daily precipitation revealed that the WRF Model can provide more accurate extreme precipitation information than the CFSv2.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiyong Wu, wzyhhu@gmail.com
Save