• Adegoke, J. O., R. A. Pielke Sr., J. Eastman, R. Mahmood, and K. G. Hubbard, 2003: Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U.S. high plains. Mon. Wea. Rev., 131, 556564, doi:10.1175/1520-0493(2003)131<0556:IOIOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adegoke, J. O., R. A. Pielke Sr., and A. M. Carleton, 2007: Observational and modeling studies of agriculture-related land use change on planetary boundary layer processes in the central U.S. Agric. For. Meteor., 142, 203215, doi:10.1016/j.agrformet.2006.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bastable, H. G., J. W. Shuttleworth, R. L. G. Dallarosa, G. Fisch, and C. A. Nobre, 1993: Observations of climate, albedo and surface radiation over cleared and undisturbed Amazonian forest. Int. J. Climatol., 13, 783796, doi:10.1002/joc.3370130706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonfils, C., and D. Lobell, 2007: Empirical evidence for a recent slowdown in irrigation- induced cooling. Proc. Natl. Acad. Sci. USA, 104, 13 58213 587, doi:10.1073/pnas.0700144104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. F., and M. S. Pervez, 2014: Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture. Agric. Syst., 127, 2840, doi:10.1016/j.agsy.2014.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. F., M. S. Pervez, and S. Maxwell, 2009: Mapping irrigated lands across the United States using MODIS satellite imagery. Remote Sensing of Global Croplands for Food Security, P. Thenkabail, J. G. Lyon, C. M. Biradar, and H. Turral, Eds., Taylor and Francis, 177–198.

    • Crossref
    • Export Citation
  • Cook, B. L., M. J. Puma, and N. Y. Krakauer, 2011: Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. Climate Dyn., 37, 15871600, doi:10.1007/s00382-010-0932-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, doi:10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeAngelis, A., F. Dominguez, Y. Fan, A. Robock, M. D. Kustu, and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, doi:10.1029/2010JD013892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, E. M., D. Niyogi, S. Frolking, J. B. Yeluripati, R. A. Pielke Sr., N. Niyogi, C. J. Vörösmarty, and U. C. Mohanty, 2006: Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian monsoon belt. Geophys. Res. Lett., 33, L14403, doi:10.1029/2006GL026550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ESRL, 2015: NCEP North American Regional Reanalysis: NARR. NOAA Earth System Research Laboratory. [Available online at http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html.]

  • Evans, J. P., and B. F. Zaitchik, 2008: Modeling the large-scale water balance impact of different irrigation systems. Water Resour. Res., 44, W08448, doi:10.1029/2007WR006671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fall, S., N. Diffenbaugh, D. Niyogi, R. A. Pielke Sr., and G. Rochon, 2010: Temperature and equivalent temperature over the United States (1979–2005). Int. J. Climatol., 30, 20452054, doi:10.1002/joc.2094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and P. K. Snyder, 2012: Modeling the atmospheric response to irrigation in the Great Plains. Part I: General impacts on precipitation and the energy budget. J. Hydrometeor., 13, 16671686, doi:10.1175/JHM-D-11-098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, doi:10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Irmak, S., 2010: Nebraska water and energy flux measurement, modeling, and research network (NEBFLUX). Trans. ASABE, 53, 10971115, doi:10.13031/2013.32600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, L., E. Ma, and X. Deng, 2014: Impacts of irrigation on the heat fluxes and near-surface temperature in an inland irrigation area of northern China. Energies, 7, 13001317, doi:10.3390/en7031300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. A., and J. R. Kiniry, 1986: CERES-Maize: A Simulation Model of Maize Growth and Development. Texas A&M University Press, 194 pp.

  • King, M. D., S.-C. Tsay, S. E. Platnick, M. Wang, and K.-N. Liou, 1997: Cloud retrieval algorithms for MODIS: Optical thickness, effective particle radius, and thermodynamic phase. NASA GSFC MODIS Algorithm Theoretical Basis Doc. ATBD-MOD-05, version 5, 79 pp. [Available online at https://eospso.nasa.gov/sites/default/files/atbd/atbd_mod05.pdf.]

  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 442458, doi:10.1109/TGRS.2002.808226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knyazikhin, Y., J. V. Martonchik, R. B. Myneni, D. J. Diner, and S. W. Running, 1998: Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res., 103, 32 25732 275, doi:10.1029/98JD02462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kropff, M. J., and H. H. van Laar, 1993: Modelling CropWeed Interactions. CABI, 274 pp.

  • Kueppers, L. M., and M. A. Snyder, 2012: Influence of irrigated agriculture on diurnal surface energy and water fluxes, surface climate, and atmospheric circulation in California. Climate Dyn., 38, 10171029, doi:10.1007/s00382-011-1123-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kueppers, L. M., M. A. Snyder, and L. C. Sloan, 2007: Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Lett., 34, L03703, doi:10.1029/2006GL028679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kueppers, L. M., and Coauthors, 2008: Seasonal temperature responses to land-use change in the western United States. Global Planet. Change, 60, 250264, doi:10.1016/j.gloplacha.2007.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Sys., 3, M03001, doi:10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Lawston, P. M., J. A. Santanello Jr., B. F. Zaitchik, and M. Rodell, 2015: Impact of irrigation methods on land surface model spinup and initialization of WRF forecasts. J. Hydrometeor., 16, 11351154, doi:10.1175/JHM-D-14-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., C. Bonfils, and J. M. Faurès, 2008: The role of irrigation expansion in past and future temperature trends. Earth Interact., 12, 111, doi:10.1175/2007EI241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, L., J. Jin, and L. M. Kueppers, 2015: Crop growth and irrigation interact to influence surface fluxes in a regional climate-cropland model (WRF3.3-CLM4crop). Climate Dyn., 45, 33473363, doi:10.1007/s00382-015-2543-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., K. G. Hubbard, and C. Carlson, 2004: Modification of growing-season surface temperature records in the northern Great Plains due to land-use transformation: Verification of modelling results and implication for global climate change. Int. J. Climatol., 24, 311327, doi:10.1002/joc.992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., and Coauthors, 2014: Land cover changes and their biogeophysical effects on climate. Int. J. Climatol., 34, 929953, doi:10.1002/joc.3736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maupin, M. A., J. F. Kenny, S. S. Hutson, J. K. Lovelace, N. L. Barber, and K. S. Linsey, 2014: Estimated use of water in the United States in 2010. USGS Rep. 1405, 56 pp., doi:10.3133/cir1405.

    • Crossref
    • Export Citation
  • Maxwell, S. K., E. C. Wood, and A. Janus, 2008: Comparison of the USGS 2001 NLCD to the 2002 USDA Census of Agriculture for the upper midwest United States. Agric. Ecosyst. Environ., 127, 141145, doi:10.1016/j.agee.2008.03.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

  • Myneni, R., 2012: MODIS LAI/FPAR product user’s guide. NASA Goddard Space Flight Center Rep., 7 pp. [Available online at https://lpdaac.usgs.gov/sites/default/files/public/modis/docs/MODIS-LAI-FPAR-User-Guide.pdf.]

  • NCEI, 2016: Climatological rankings. NOAA/National Centers for Environmental Information. [Available online at http://www.ncdc.noaa.gov/temp-and-precip/climatological-rankings/.]

  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp. [Available online at http://www.cesm.ucar.edu/models/ccsm4.0/clm/CLM4_Tech_Note.pdf.]

  • Ookouchi, Y., M. Segal, R. C. Kessler, and R. A. Pielke, 1984: Evaluation of soil moisture effects on the generation and modification of mesoscale circulations. Mon. Wea. Rev., 112, 22812292, doi:10.1175/1520-0493(1984)112<2281:EOSMEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozdogan, M., M. Rodell, H. K. Beaudoing, and D. L. Toll, 2010: Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. J. Hydrometeor., 11, 171184, doi:10.1175/2009JHM1116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pervez, M. S., and J. F. Brown, 2010: Mapping irrigated lands at 250-m scale by merging MODIS data and national agricultural statistics. Remote Sens., 2, 23882412, doi:10.3390/rs2102388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151177, doi:10.1029/1999RG000072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., and X. Zeng, 1989: Influence on severe storm development of irrigated land. Natl. Wea. Dig., 14 (2), 1617.

  • Pielke, R. A., Sr., C. Davey, and J. Morgan, 2004: Assessing “global warming” with surface heat content. Eos, Trans. Amer. Geophys. Union, 85, 210211, doi:10.1029/2004EO210004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., J. Adegoke, A. Beltrán-Przekurat, C. A. Hiemstra, J. Lin, U. S. Nair, D. Niyogi, and T. E. Nobis, 2007: An overview of regional land-use and land-cover impacts on rainfall. Tellus, 59B, 587601, doi:10.1111/j.1600-0889.2007.00251.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puma, M. J., and B. I. Cook, 2010: Effects of irrigation on global climate during the 20th century. J. Geophys. Res., 115, D16120, doi:10.1029/2010JD014122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., M. Huang, B. Yang, and L. K. Berg, 2013: A modeling study of irrigation effects on surface fluxes and land–air–cloud interactions in the southern Great Plains. J. Hydrometeor., 14, 700721, doi:10.1175/JHM-D-12-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raddatz, R. L., 2007: Evidence for the influence of agriculture on weather and climate through the transformation and management of vegetation: Illustrated by examples from the Canadian prairies. Agric. For. Meteor., 142, 186202, doi:10.1016/j.agrformet.2006.08.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sacks, W. J., B. I. Cook, N. Buenning, S. Levis, and J. H. Helkowski, 2009: Effects of global irrigation on the near-surface climate. Climate Dyn., 33, 159175, doi:10.1007/s00382-008-0445-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saeed, F., S. Hagemann, and D. Jacob, 2009: Impact of irrigation on the South Asian summer monsoon. Geophys. Res. Lett., 36, L20711, doi:10.1029/2009GL040625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, M., R. Avissar, M. C. McCumber, and R. A. Pielke, 1988: Evaluation of vegetation effects on the generation and modification of mesoscale circulations. J. Atmos. Sci., 45, 22682292, doi:10.1175/1520-0469(1988)045<2268:EOVEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, W. D., 1965: Physical Climatology. University of Chicago Press, 272 pp.

  • Siebert, S., P. Döll, J. Hoogeveen, J. M. Faures, K. Frenken, and S. Feick, 2005: Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci., 9, 535547, doi:10.5194/hess-9-535-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, S., J. Burke, J. M. Faures, K. Frenken, J. Hoogeveen, P. Döll, and F. T. Portmann, 2010: Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci., 14, 18631880, doi:10.5194/hess-14-1863-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skaggs, K. E., and S. Irmak, 2012: Long-term trends in air temperature distribution and extremes, growing degree-days, and spring and fall frosts for climate impact assessments on agricultural practices in Nebraska. J. Appl. Meteor. Climatol., 51, 20602073, doi:10.1175/JAMC-D-11-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • USDA, 2004: 2002 Census of Agriculture. U.S. Department of Agriculture Farm and Ranch Irrigation Survey (2003), Vol. 3, Special Studies, Part 1, Rep. AC-02-SS-1, 216 pp. [Available online at https://www.agcensus.usda.gov/Publications/2002/FRIS/fris03.pdf.]

  • USDA, 2014: 2012 Census of Agriculture. U.S. Department of Agriculture Farm and Ranch Irrigation Survey (2013), Vol. 3, Special Studies, Part 1, Rep. AC-12-SS-1, 266 pp. [Available online at https://www.agcensus.usda.gov/Publications/2012/Online_Resources/Farm_and_Ranch_Irrigation_Survey/fris13.pdf.]

  • USGS, 2016: Global land cover characteristics data base version 2.0. U.S. Geological Survey. [Available online at https://lta.cr.usgs.gov/glcc/globdoc2_0.]

  • Wan, Z., 1999: MODIS land-surface temperature algorithm theoretical basis document (LST ATBD), version 3.3. University of California, Santa Barbara, Institute for Computational Earth System Science Tech. Rep., 75 pp. [Available online at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf.]

  • Wan, Z., 2009: Collection-5 MODIS land surface temperature products users’ guide. University of California, Santa Barbara, Institute for Computational Earth System Science Tech. Rep., 30 pp. [Available online at http://www.icess.ucsb.edu/modis/LstUsrGuide/MODIS_LST_products_Users_guide_C5.pdf.]

  • Wang, J., and Coauthors, 2016: A multi-sensor view of the 2012 central plains drought from space. Front. Environ. Sci., 4, doi:10.3389/fenvs.2016.00045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wardlow, B., and K. Callahan, 2014: A multi-scale accuracy assessment of the MODIS irrigated agriculture data-set (MIrAD) for the state of Nebraska, USA. GISci. Remote Sens., 51, 575592, doi:10.1080/15481603.2014.952546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H. S., A. Dobermann, J. L. Lindquist, D. T. Walters, T. J. Arkebauer, and K. G. Cassman, 2004: Hybrid-maize—A maize simulation model that combines two crop modeling approaches. Field Crops Res., 87, 131154, doi:10.1016/j.fcr.2003.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., J. Evans, and R. B. Smith, 2005: MODIS-derived boundary conditions for a mesoscale climate model: Application to irrigated agriculture in the Euphrates basin. Mon. Wea. Rev., 133, 17271743, doi:10.1175/MWR2947.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 866 365 8
PDF Downloads 265 97 3

Mesoscale Modeling of the Meteorological Impacts of Irrigation during the 2012 Central Plains Drought

Clint Aegerter Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska
NOAA/National Weather Service/Weather Forecast Office La Crosse, La Crosse, Wisconsin

Search for other papers by Clint Aegerter in
Current site
Google Scholar
PubMed
Close
,
Jun Wang Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska
Center for Global and Regional Environmental Research, The University of Iowa, Iowa City, Iowa
Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Jun Wang in
Current site
Google Scholar
PubMed
Close
,
Cui Ge Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska
Center for Global and Regional Environmental Research, The University of Iowa, Iowa City, Iowa
Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Cui Ge in
Current site
Google Scholar
PubMed
Close
,
Suat Irmak Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Suat Irmak in
Current site
Google Scholar
PubMed
Close
,
Robert Oglesby Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Robert Oglesby in
Current site
Google Scholar
PubMed
Close
,
Brian Wardlow Center for Advanced Land Management Information Technologies, University of Nebraska–Lincoln, Lincoln, Nebraska
School of Natural Resources, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Brian Wardlow in
Current site
Google Scholar
PubMed
Close
,
Haishun Yang Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Haishun Yang in
Current site
Google Scholar
PubMed
Close
,
Jingshen You Nebraska State Climate Office, School of Natural Resources, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Jingshen You in
Current site
Google Scholar
PubMed
Close
, and
Martha Shulski Nebraska State Climate Office, School of Natural Resources, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Martha Shulski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the summer of 2012, the central plains of the United States experienced one of its most severe droughts on record. This study examines the meteorological impacts of irrigation during this drought through observations and model simulations using the Community Land Model coupled to the Weather Research and Forecasting (WRF) Model. A simple parameterization of irrigation processes is added into the WRF Model. In addition to keeping soil moisture in irrigated areas at a minimum of 50% of soil moisture hold capacity, this irrigation scheme has the following new features: 1) accurate representation of the spatial distribution of irrigation area in the study domain by using a MODIS-based land surface classification with 250-m pixel size and 2) improved representation of the time series of leaf area index (LAI) values derived from crop modeling and satellite observations in both irrigated and nonirrigated areas. Several numerical sensitivity experiments are conducted. The WRF-simulated temperature field when including soil moisture and LAI modification within the model is shown to be most consistent with ground and satellite observations, all indicating a temperature decrease of 2–3 K in irrigated areas relative to the control run. Modification of LAI in irrigated and dryland areas led to smaller changes, with a 0.2-K temperature decrease in irrigated areas and up to a 0.5-K temperature increase in dryland areas. Furthermore, the increased soil moisture and modified LAI are shown to lead to statistically significant increases in surface divergence and surface pressure and to decreases in planetary boundary layer height over irrigated areas.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-16-0292.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jun Wang, jun-wang-1@uiowa.edu

Abstract

In the summer of 2012, the central plains of the United States experienced one of its most severe droughts on record. This study examines the meteorological impacts of irrigation during this drought through observations and model simulations using the Community Land Model coupled to the Weather Research and Forecasting (WRF) Model. A simple parameterization of irrigation processes is added into the WRF Model. In addition to keeping soil moisture in irrigated areas at a minimum of 50% of soil moisture hold capacity, this irrigation scheme has the following new features: 1) accurate representation of the spatial distribution of irrigation area in the study domain by using a MODIS-based land surface classification with 250-m pixel size and 2) improved representation of the time series of leaf area index (LAI) values derived from crop modeling and satellite observations in both irrigated and nonirrigated areas. Several numerical sensitivity experiments are conducted. The WRF-simulated temperature field when including soil moisture and LAI modification within the model is shown to be most consistent with ground and satellite observations, all indicating a temperature decrease of 2–3 K in irrigated areas relative to the control run. Modification of LAI in irrigated and dryland areas led to smaller changes, with a 0.2-K temperature decrease in irrigated areas and up to a 0.5-K temperature increase in dryland areas. Furthermore, the increased soil moisture and modified LAI are shown to lead to statistically significant increases in surface divergence and surface pressure and to decreases in planetary boundary layer height over irrigated areas.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-16-0292.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jun Wang, jun-wang-1@uiowa.edu

Supplementary Materials

    • Supplemental Materials (PDF 189.85 KB)
Save