• Bellouin, N., O. Boucher, J. Haywood, C. Johnson, A. Jones, J. Rae, and S. Woodward, 2007: Improved representation of aerosols for HadGEM2. Hadley Centre Tech. Note 73, 42 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/8/f/HCTN_73.pdf.]

  • Bellouin, N., J. Rae, A. Jones, C. Johnson, J. Haywood, and O. Boucher, 2011: Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J. Geophys. Res., 116, D20206, doi:10.1029/2011JD016074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluth, G. J. S., S. D. Doiron, C. C. Schnetzler, A. J. Krueger, and L. S. Walter, 1992: Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions. Geophys. Res. Lett., 19, 151154, doi:10.1029/91GL02792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 571–634.

    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1977: Climatic Changes. Amer. Geophys. Union, 271 pp.

  • Ciais, P., and Coauthors, 2013: Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 465–570.

  • Crook, J. A., L. A. Jones, P. M. Forster, and R. Crook, 2011: Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy Environ. Sci., 4, 31013109, doi:10.1039/c1ee01495a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, J. A., L. S. Jackson, S. M. Osprey, and P. M. Forster, 2015: A comparison of temperature and precipitation responses to different Earth radiation management geoengineering schemes. J. Geophys. Res. Atmos., 120, 93529373, doi:10.1002/2015JD023269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P., 2006: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77, 211220, doi:10.1007/s10584-006-9101-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudley, V. E., 1995: Test results: Industrial solar technology parabolic trough solar collector. Sandia National Laboratories Rep. SAND94-1117, 140 pp. [Available online at http://www.osti.gov/scitech/servlets/purl/211613.]

    • Crossref
    • Export Citation
  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689719, doi:10.1002/qj.49712253107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, D. L., 1981: Simplified method for predicting photovoltaic array output. Sol. Energy, 27, 555560, doi:10.1016/0038-092X(81)90051-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gueymard, C. A., 2009: Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications. Sol. Energy, 83, 432444, doi:10.1016/j.solener.2008.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and R. Reynolds, 1996: Global surface air temperature in 1995: Return to pre-Pinatubo level. Geophys. Res. Lett., 23, 16651668, doi:10.1029/96GL01040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., N. Butchart, T. J. Hinton, S. M. Osprey, and L. J. Gray, 2012: The effect of a well-resolved stratosphere on surface climate: Differences between CMIP5 simulations with high and low top versions of the Met Office climate model. J. Climate, 25, 70837099, doi:10.1175/JCLI-D-11-00579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Haywood, J. M., A. Jones, N. Bellouin, and D. Stephenson, 2013: Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Climate Change, 3, 660665, doi:10.1038/nclimate1857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huber, I., L. Bugliaro, M. Ponater, H. Garny, C. Emde, and B. Mayer, 2016: Do climate models project changes in solar resources? Sol. Energy, 129, 6584, doi:10.1016/j.solener.2015.12.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International Energy Agency, 2014a: Technology roadmap: Solar photovoltaic energy. International Energy Agency Rep., 43 pp. [Available online at https://www.iea.org/publications/freepublications/publication/pv_roadmap.pdf.]

  • International Energy Agency, 2014b: Technology roadmap: Solar thermal electricity. International Energy Agency Rep., 46 pp. [Available online at https://www.iea.org/publications/freepublications/publication/technologyroadmapsolarthermalelectricity_2014edition.pdf.]

  • Jackson, L. S., J. A. Crook, A. Jarvis, D. Leedal, A. Ridgwell, N. Vaughan, and P. M. Forster, 2015: Assessing the controllability of Arctic sea ice extent by sulfate aerosol geoengineering. Geophys. Res. Lett., 42, 12231231, doi:10.1002/2014GL062240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jerez, S., and Coauthors, 2015: The impact of climate change on photovoltaic power generation in Europe. Nat. Commun., 6, 10014, doi:10.1038/ncomms10014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, A., D. L. Roberts, M. J. Woodage, and C. E. Johnson, 2001: Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. J. Geophys. Res., 106, 20 29320 310, doi:10.1029/2000JD000089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, A., J. Haywood, O. Boucher, B. Kravitz, and A. Robock, 2010: Geoengineering by stratospheric SO2 injection: Results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE. Atmos. Chem. Phys., 10, 59996006, doi:10.5194/acp-10-5999-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalogirou, S. A., 2004: Solar thermal collectors and applications. Prog. Energy Combust. Sci., 30, 231295, doi:10.1016/j.pecs.2004.02.001.

  • Kearney, D., 1989: Solar electric generating stations (SEGS). IEEE Power Eng. Rev., 9, 48, doi:10.1109/39.87383.

  • Kelly, N. A., and T. L. Gibson, 2009: Improved photovoltaic energy output for cloudy conditions with a solar tracking system. Sol. Energy, 83, 20922102, doi:10.1016/j.solener.2009.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kravitz, B., A. Robock, O. Boucher, H. Schmidt, K. E. Taylor, G. Stenchikov, and M. Schulz, 2011: The Geoengineering Model Intercomparison Project (GeoMIP). Atmos. Sci. Lett., 12, 162167, doi:10.1002/asl.316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kravitz, B., A. Robock, P. M. Forster, J. M. Haywood, M. G. Lawrence, and H. Schmidt, 2013: An overview of the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos., 118, 13 103113 107, doi:10.1002/2013JD020569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and M. I. Mishchenko, 1995: Climate forcing, climate sensitivity, and climate response: A radiative model perspective on atmospheric aerosols. Aerosol Forcing of Climate, R. J. Charlson and J. Heintzenberg, Eds., John Wiley & Sons, 11–42.

  • Lenton, T. M., and N. E. Vaughan, 2009: The radiative forcing potential of different climate geoengineering options. Atmos. Chem. Phys., 9, 55395561, doi:10.5194/acp-9-5539-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B. Y. H., and R. C. Jordan, 1961: Daily insolation on surfaces tilted toward the equator. ASHRAE J., 3, 5359.

  • Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev., 4, 723757, doi:10.5194/gmd-4-723-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., 2009: Effect of stratospheric aerosols on direct sunlight and implications for concentrating solar power. Environ. Sci. Technol., 43, 27842786, doi:10.1021/es802206b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., and Coauthors, 2000: Summary for policymakers. IPCC Special Report: Emissions Scenarios, Cambridge University Press, 1–20. [Available online at https://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf.]

  • Niemeier, U., H. Schmidt, K. Alterskjær, and J. E. Kristjánsson, 2013: Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle. J. Geophys. Res. Atmos., 118, 11 90511 917, doi:10.1002/2013JD020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oman, L., A. Robock, G. Stenchikov, G. A. Schmidt, and R. Ruedy, 2005: Climatic response to high-latitude volcanic eruptions. J. Geophys. Res., 110, D13103, doi:10.1029/2004JD005487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oppenheimer, M., and Coauthors, 2014: Emergent risks and key vulnerabilities. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects, C. B. Field et al., Eds., Cambridge University Press, 1039–1099.

  • Osprey, S. M., L. J. Gray, S. C. Hardiman, N. Butchart, and T. J. Hinton, 2013: Stratospheric variability in twentieth-century CMIP5 simulations of the Met Office climate model: High top versus low top. J. Climate, 26, 15951606, doi:10.1175/JCLI-D-12-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, S., and W. Warmuth, 2014: Photovoltaics report. Fraunhofer ISE. [Available online at https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf.]

  • Rasch, P. J., S. Tilmes, R. P. Turco, A. Robock, L. Oman, C.-C. Chen, G. L. Stenchikov, and R. R. Garcia, 2008: An overview of geoengineering of climate using stratospheric sulphate aerosols. Philos. Trans. Roy. Soc., 366A, 40074037, doi:10.1098/rsta.2008.0131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., L. Oman, and G. L. Stenchikov, 2008: Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res., 113, D16101, doi:10.1029/2008JD010050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., A. Marquardt, B. Kravitz, and G. Stenchikov, 2009: Benefits, risks, and costs of stratospheric geoengineering. Geophys. Res. Lett., 36, L19703, doi:10.1029/2009GL039209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogelj, J., M. Meinshausen, and R. Knutti, 2012: Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Climate Change, 2, 248253, doi:10.1038/nclimate1385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skoplaki, E., A. G. Boudouvis, and J. A. Palyvos, 2008: A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Sol. Energy Mater. Sol. Cells, 92, 13931402, doi:10.1016/j.solmat.2008.05.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, C. J., P. M. Forster, and R. Crook, 2016: An all-sky radiative transfer method to predict optimal tilt and azimuth angle of a solar collector. Sol. Energy, 123, 88101, doi:10.1016/j.solener.2015.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tilmes, S., R. Müller, and R. Salawitch, 2008: The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science, 320, 12011204, doi:10.1126/science.1153966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., D. Folini, F. Henschel, N. Fischer, and B. Müller, 2015: Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Sol. Energy, 116, 1224, doi:10.1016/j.solener.2015.03.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1534 396 35
PDF Downloads 732 173 14

Impacts of Stratospheric Sulfate Geoengineering on Global Solar Photovoltaic and Concentrating Solar Power Resource

Christopher J. Smith Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
Energy Research Institute, School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom

Search for other papers by Christopher J. Smith in
Current site
Google Scholar
PubMed
Close
,
Julia A. Crook Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Julia A. Crook in
Current site
Google Scholar
PubMed
Close
,
Rolf Crook Energy Research Institute, School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom

Search for other papers by Rolf Crook in
Current site
Google Scholar
PubMed
Close
,
Lawrence S. Jackson Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Lawrence S. Jackson in
Current site
Google Scholar
PubMed
Close
,
Scott M. Osprey Department of Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by Scott M. Osprey in
Current site
Google Scholar
PubMed
Close
, and
Piers M. Forster Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Piers M. Forster in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In recent years, the idea of geoengineering, artificially modifying the climate to reduce global temperatures, has received increasing attention because of the lack of progress in reducing global greenhouse gas emissions. Stratospheric sulfate injection (SSI) is a geoengineering method proposed to reduce planetary warming by reflecting a proportion of solar radiation back into space that would otherwise warm the surface and lower atmosphere. The authors analyze results from the Met Office Hadley Centre Global Environment Model, version 2, Carbon Cycle Stratosphere (HadGEM2-CCS) climate model with stratospheric emissions of 10 Tg yr−1 of SO2, designed to offset global temperature rise by around 1°C. A reduction in concentrating solar power output of 5.9% on average over land is shown under SSI relative to a baseline future climate change scenario (RCP4.5) caused by a decrease in direct radiation. Solar photovoltaic energy is generally less affected as it can use diffuse radiation, which increases under SSI, at the expense of direct radiation. The results from HadGEM2-CCS are compared with the Goddard Earth Observing System Chemistry–Climate Model (GEOSCCM) from the Geoengineering Model Intercomparison Project (GeoMIP), with 5 Tg yr−1 emission of SO2. In many regions, the differences predicted in solar energy output between the SSI and RCP4.5 simulations are robust, as the sign of the changes for both HadGEM2-CCS and GEOSCCM agree. Furthermore, the sign of the total and direct annual mean radiation changes evaluated by HadGEM2-CCS agrees with the sign of the multimodel mean changes of an ensemble of GeoMIP models over the majority of the world.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-16-0298.s1.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author e-mail: Christopher J. Smith, c.j.smith1@leeds.ac.uk

Abstract

In recent years, the idea of geoengineering, artificially modifying the climate to reduce global temperatures, has received increasing attention because of the lack of progress in reducing global greenhouse gas emissions. Stratospheric sulfate injection (SSI) is a geoengineering method proposed to reduce planetary warming by reflecting a proportion of solar radiation back into space that would otherwise warm the surface and lower atmosphere. The authors analyze results from the Met Office Hadley Centre Global Environment Model, version 2, Carbon Cycle Stratosphere (HadGEM2-CCS) climate model with stratospheric emissions of 10 Tg yr−1 of SO2, designed to offset global temperature rise by around 1°C. A reduction in concentrating solar power output of 5.9% on average over land is shown under SSI relative to a baseline future climate change scenario (RCP4.5) caused by a decrease in direct radiation. Solar photovoltaic energy is generally less affected as it can use diffuse radiation, which increases under SSI, at the expense of direct radiation. The results from HadGEM2-CCS are compared with the Goddard Earth Observing System Chemistry–Climate Model (GEOSCCM) from the Geoengineering Model Intercomparison Project (GeoMIP), with 5 Tg yr−1 emission of SO2. In many regions, the differences predicted in solar energy output between the SSI and RCP4.5 simulations are robust, as the sign of the changes for both HadGEM2-CCS and GEOSCCM agree. Furthermore, the sign of the total and direct annual mean radiation changes evaluated by HadGEM2-CCS agrees with the sign of the multimodel mean changes of an ensemble of GeoMIP models over the majority of the world.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-16-0298.s1.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author e-mail: Christopher J. Smith, c.j.smith1@leeds.ac.uk
Save