• Breed, D., R. Rasmussen, C. Weeks, B. Boe, and T. Deshler, 2014: Evaluating winter orographic cloud seeding: Design of the Wyoming Weather Modification Pilot Project (WWMPP). J. Appl. Meteor. Climatol., 53, 282299, doi:10.1175/JAMC-D-13-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X., L. Xue, B. Geerts, R. Rasmussen, and D. Breed, 2014: A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part I: Observations and model validations. J. Appl. Meteor. Climatol., 53, 22642286, doi:10.1175/JAMC-D-14-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X., B. Geerts, L. Xue, and R. Rasmussen, 2017: Large-eddy simulations of the impact of ground-based glaciogenic seeding on shallow orographic convection: A case study. J. Appl. Meteor. Climatol., 56, 6984, doi:10.1175/JAMC-D-16-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32, doi:10.1175/0065-9401-21.43.29.

    • Crossref
    • Export Citation
  • Damiani, R., and S. Haimov, 2006: A high-resolution dual-Doppler technique for fixed multi-antenna airborne radar. IEEE Trans. Geosci. Remote Sens., 44, 34753489, doi:10.1109/TGRS.2006.881745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1997: Report to North Dakota Atmospheric Resource Board and Weather Modification Incorporated on tests of the ice nucleating ability of aerosols produced by the Lohse Airborne Generator. Colorado State University Department of Atmospheric Science Rep., 15 pp.

  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, doi:10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garstang, M., R. Bruintjes, R. Serafin, H. Orville, B. Boe, W. Cotton, and J. Warburton, 2005: Weather modification: Finding common ground. Bull. Amer. Meteor. Soc., 86, 647655, doi:10.1175/BAMS-86-5-647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, and Y. Yang, 2011: Boundary-layer turbulence and orographic precipitation growth in cold clouds: Evidence from profiling airborne radar data. J. Atmos. Sci., 68, 23442365, doi:10.1175/JAS-D-10-05009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., B. Pokharel, and D. A. R. Kristovich, 2015a: Blowing snow as a natural glaciogenic cloud seeding mechanism. Mon. Wea. Rev., 143, 50175033, doi:10.1175/MWR-D-15-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., Y. Yang, R. Rasmussen, S. Haimov, and B. Pokharel, 2015b: Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data. Mon. Wea. Rev., 143, 644665, doi:10.1175/MWR-D-14-00199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L., 1986: Hypotheses for the Climax wintertime orographic cloud seeding experiments. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 105–108, doi:10.1175/0065-9401-21.43.105.

    • Crossref
    • Export Citation
  • Griffith, D. A., J. R. Thompson, and D. A. Risch, 1991: A winter cloud seeding program in Utah. J. Wea. Modif., 23, 2734. [Available online at http://www.weathermodification.org/publications/index.php/JWM/article/view/320/361.]

    • Search Google Scholar
    • Export Citation
  • Griffith, D. A., J. R. Thompson, D. A. Risch, and M. E. Solak, 1997: An update on a winter cloud seeding program in Utah. J. Wea. Modif., 29, 9599. [Available online at http://www.weathermodification.org/publications/index.php/JWM/article/view/473/502.]

    • Search Google Scholar
    • Export Citation
  • Henderson, T. J., 1966: A ten year non-randomized cloud seeding program on the Kings River in California. J. Appl. Meteor., 5, 697702, doi:10.1175/1520-0450(1966)005<0697:ATYNRC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, T. J., 2003: The Kings River Weather Resources Management Program. J. Wea. Modif., 35, 4144. [Available online at http://www.weathermodification.org/publications/index.php/JWM/article/view/448/477.]

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. Academic Press, 432 pp.

  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2002: Possible aerosol effects on ice clouds via contact nucleation. J. Atmos. Sci., 59, 647656, doi:10.1175/1520-0469(2001)059<0647:PAEOIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and C. Hoose, 2009: Sensitivity studies of different aerosol indirect effects in mixed-phase clouds. Atmos. Chem. Phys., 9, 89178934, doi:10.5194/acp-9-8917-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manton, M. J., L. Warren, S. L. Kenyon, A. D. Peace, S. P. Bilish, and K. Kemsley, 2011: A confirmatory snowfall enhancement project in the Snowy Mountains of Australia. Part I: Project design and response variables. J. Appl. Meteor. Climatol., 50, 14321447, doi:10.1175/2011JAMC2659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, doi:10.1175/JAS3904.1.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mielke, P. W., 1995: Comments on the Climax I and II experiments including replies to Rangno and Hobbs. J. Appl. Meteor., 34, 12281232, doi:10.1175/1520-0450(1995)034<1228:COTCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirocha, J., B. Kosović, and G. Kirkil, 2014: Resolved turbulence characteristics in large-eddy simulations nested within mesoscale simulations using the Weather Research and Forecasting Model. Mon. Wea. Rev., 142, 806831, doi:10.1175/MWR-D-13-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 2003: Critical Issues in Weather Modification Research. National Academies Press, 144 pp., doi:10.17226/10829.

    • Crossref
    • Export Citation
  • Pokharel, B., and G. Vali, 2011: Evaluation of collocated measurements of radar reflectivity and particle sizes in ice clouds. J. Appl. Meteor. Climatol., 50, 21042119, doi:10.1175/JAMC-D-10-05010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokharel, B., and B. Geerts, 2016: A multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming. Part I: Project description. Atmos. Res., 182, 269281, doi:10.1016/j.atmosres.2016.08.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokharel, B., B. Geerts, X. Jing, K. Friedrich, K. Ikeda, and R. Rasmussen, 2017: A multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming. Part II: Seeding impact analysis. Atmos. Res., 183, 4257, doi:10.1016/j.atmosres.2016.08.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. International Series in Natural Philosophy, Butterworth-Heinemann, 304 pp.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Thompson, G., P. R. Field, W. R. Hall, and R. Rasmussen, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., 1947: The nucleation of ice formation by silver iodide. J. Appl. Phys., 18, 593595, doi:10.1063/1.1697813.

  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, doi:10.1175/BAMS-D-11-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2013a: AgI cloud seeding effects as seen in WRF simulations. Part I: Model description and idealized 2D sensitivity tests. J. Appl. Meteor. Climatol., 52, 14331457, doi:10.1175/JAMC-D-12-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., S. Tessendorf, E. Nelson, R. Rasmussen, D. Breed, S. Parkinson, P. Holbrook, and D. Blestrud, 2013b: AgI cloud seeding effects as seen in WRF simulations. Part II: 3D real case simulations and sensitivity tests. J. Appl. Meteor. Climatol., 52, 14581476, doi:10.1175/JAMC-D-12-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., X. Chu, R. Rasmussen, D. Breed, B. Boe, and B. Geerts, 2014: The dispersion of silver iodide particles from ground-based generators over complex terrain. Part II: WRF large-eddy simulations vs. observations. J. Appl. Meteor. Climatol., 53, 13421361, doi:10.1175/JAMC-D-13-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., X. Chu, R. Rasmussen, D. Breed, and B. Geerts, 2016: A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part II: AgI dispersion and seeding signals simulated by WRF. J. Appl. Meteor. Climatol., 55, 445464, doi:10.1175/JAMC-D-15-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 465 213 19
PDF Downloads 368 146 4

A Case Study of Cloud Radar Observations and Large-Eddy Simulations of a Shallow Stratiform Orographic Cloud, and the Impact of Glaciogenic Seeding

Xia ChuDepartment of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Xia Chu in
Current site
Google Scholar
PubMed
Close
,
Bart GeertsDepartment of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
,
Lulin XueResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Lulin Xue in
Current site
Google Scholar
PubMed
Close
, and
Binod PokharelDepartment of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Binod Pokharel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of glaciogenic seeding on precipitation remains uncertain, mainly because of the noisy nature of precipitation. Operational seeding programs often target cold-season orographic clouds because of their abundance of supercooled liquid water. Such clouds are complicated because of common natural seeding from above (seeder–feeder effect) or from below (blowing snow). Here, observations, mainly from a profiling airborne Doppler radar, and numerical simulations are used to examine the impact of glaciogenic seeding on a very shallow (<1 km), largely blocked cloud that is not naturally seeded from aloft or from below. This cloud has limited but persistent supercooled liquid water, a cloud-base (top) temperature of −12°C (−16°C), and produces only very light snowfall naturally. A Weather Research and Forecasting Model large-eddy simulation at 100-m resolution captures the observed upstream stability and wind profiles and reproduces the essential characteristics of the orographic flow, cloud, and precipitation. Both observations and simulations indicate that seeding locally increases radar (or computed) reflectivity in the target area, even after removal of the natural trend between these two periods in a nearby control region. A model sensitivity run suggests that seeding effectively glaciates the mostly liquid cloud and substantially increases snowfall within the seeding plume. This is due to a dramatic increase in the number of ice particles and not to their size. The increased ice particle concentration facilitates snow growth by vapor deposition in a cloud the temperature range of which is conducive to the Bergeron process.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Bart Geerts, geerts@uwyo.edu

Abstract

The impact of glaciogenic seeding on precipitation remains uncertain, mainly because of the noisy nature of precipitation. Operational seeding programs often target cold-season orographic clouds because of their abundance of supercooled liquid water. Such clouds are complicated because of common natural seeding from above (seeder–feeder effect) or from below (blowing snow). Here, observations, mainly from a profiling airborne Doppler radar, and numerical simulations are used to examine the impact of glaciogenic seeding on a very shallow (<1 km), largely blocked cloud that is not naturally seeded from aloft or from below. This cloud has limited but persistent supercooled liquid water, a cloud-base (top) temperature of −12°C (−16°C), and produces only very light snowfall naturally. A Weather Research and Forecasting Model large-eddy simulation at 100-m resolution captures the observed upstream stability and wind profiles and reproduces the essential characteristics of the orographic flow, cloud, and precipitation. Both observations and simulations indicate that seeding locally increases radar (or computed) reflectivity in the target area, even after removal of the natural trend between these two periods in a nearby control region. A model sensitivity run suggests that seeding effectively glaciates the mostly liquid cloud and substantially increases snowfall within the seeding plume. This is due to a dramatic increase in the number of ice particles and not to their size. The increased ice particle concentration facilitates snow growth by vapor deposition in a cloud the temperature range of which is conducive to the Bergeron process.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Bart Geerts, geerts@uwyo.edu
Save