The Role of Mesoscale-Convective Processes in Explaining the 21 November 2016 Epidemic Thunderstorm Asthma Event in Melbourne, Australia

Andrew Grundstein Department of Geography, University of Georgia, Athens, Georgia

Search for other papers by Andrew Grundstein in
Current site
Google Scholar
PubMed
Close
,
Marshall Shepherd Department of Geography, University of Georgia, Athens, Georgia

Search for other papers by Marshall Shepherd in
Current site
Google Scholar
PubMed
Close
,
Paul Miller Department of Geography, University of Georgia, Athens, Georgia

Search for other papers by Paul Miller in
Current site
Google Scholar
PubMed
Close
, and
Stefanie Ebelt Sarnat Department of Environmental Health, Emory University, Atlanta, Georgia

Search for other papers by Stefanie Ebelt Sarnat in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A major thunderstorm asthma epidemic struck Melbourne and surrounding Victoria, Australia, on 21 November 2016, which led to multiple deaths, a flood of residents seeking medical attention for respiratory problems, and an overwhelmed emergency management system. This case day had all the classic ingredients for an epidemic, including high rye grass pollen concentrations, a strong multicellular thunderstorm system moving across the region, and a large population of several million people in the vicinity of Melbourne. A particular characteristic of this event was the strong, gusty winds that likely spread the pollen grains and/or allergenic contents widely across the region to increase population exposure. This exploratory case study is the first to examine the usefulness of low-to-middle-atmospheric thermodynamic information for anticipating epidemic thunderstorm asthma outbreaks by allowing the forecast of strong downdraft winds. The authors investigated the utility of several mesoscale products derived from atmospheric soundings such as downdraft convective available potential energy (DCAPE) and indices for predicting surface wind gusts such as microburst wind speed potential index (MWPI) and a wind gust index (GUSTEX). These results indicate that DCAPE levels reached “high” to “very high” thresholds for strong downdraft winds in the lead-up to the thunderstorm, and the MWPI and GUSTEX indices accurately predicted the high maximum surface wind observations. This information may be useful for diagnostic and prognostic assessment of epidemic thunderstorm asthma and in providing an early warning to health practitioners, emergency management officials, and residents in affected areas.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew Grundstein, andrewg@uga.edu

Abstract

A major thunderstorm asthma epidemic struck Melbourne and surrounding Victoria, Australia, on 21 November 2016, which led to multiple deaths, a flood of residents seeking medical attention for respiratory problems, and an overwhelmed emergency management system. This case day had all the classic ingredients for an epidemic, including high rye grass pollen concentrations, a strong multicellular thunderstorm system moving across the region, and a large population of several million people in the vicinity of Melbourne. A particular characteristic of this event was the strong, gusty winds that likely spread the pollen grains and/or allergenic contents widely across the region to increase population exposure. This exploratory case study is the first to examine the usefulness of low-to-middle-atmospheric thermodynamic information for anticipating epidemic thunderstorm asthma outbreaks by allowing the forecast of strong downdraft winds. The authors investigated the utility of several mesoscale products derived from atmospheric soundings such as downdraft convective available potential energy (DCAPE) and indices for predicting surface wind gusts such as microburst wind speed potential index (MWPI) and a wind gust index (GUSTEX). These results indicate that DCAPE levels reached “high” to “very high” thresholds for strong downdraft winds in the lead-up to the thunderstorm, and the MWPI and GUSTEX indices accurately predicted the high maximum surface wind observations. This information may be useful for diagnostic and prognostic assessment of epidemic thunderstorm asthma and in providing an early warning to health practitioners, emergency management officials, and residents in affected areas.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew Grundstein, andrewg@uga.edu
Save
  • Asthma Australia, 2016: Melbourne pollen count. [Available online at https://www.asthmaaustralia.org.au/vic/about-asthma/pollen-count/pollen-count-2015.]

  • Beggs, P. J., 2017: Allergen aerosol from pollen-nucleated precipitation: A novel thunderstorm asthma trigger. Atmos. Environ., 152, 455457, doi:10.1016/j.atmosenv.2016.12.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellomo, R., P. Gigliotti, A. Treloar, P. Holmes, C. Suphioglu, M. B. Sing, and B. Knox, 1992: Two consecutive thunderstorm associated epidemics of asthma in the city of Melbourne: The possible role of rye grass pollen. Med. J. Aust., 156, 834837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dabrera, G., V. Murray, J. Emberlin, J. G. Ayres, C. Collier, Y. Clewlow, and P. Sachon, 2013: Thunderstorm asthma: An overview of the evidence base and implications for public health advice. QJM, 106, 207217, doi:10.1093/qjmed/hcs234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dales, R. E., S. Cakmak, S. Judek, T. Dann, F. Coates, J. R. Brook, and R. T. Burnett, 2003: The role of fungal spores in thunderstorm asthma. Chest, 123, 745750, doi:10.1378/chest.123.3.745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Amato, G., G. Liccardi, and G. Frenguelli, 2007: Thunderstorm-asthma and pollen allergy. Allergy, 62, 1116, doi:10.1111/j.1398-9995.2006.01271.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580.

  • Fujita, T. T., 1986: Mesoscale classifications: Their history and their application to forecasting. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 18–35.

    • Crossref
    • Export Citation
  • Geerts, B., 2001: Estimating downburst-related maximum surface wind by means of proximity soundings in New South Wales, Australia. Wea. Forecasting, 16, 261269, doi:10.1175/1520-0434(2001)016<0261:EDRMSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., T. L. Mote, and H. E. Brooks, 2014: Severe-thunderstorm reanalysis environments and collocated radiosonde observations. J. Appl. Meteor. Climatol., 53, 742751, doi:10.1175/JAMC-D-13-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grundstein, A., and S. E. Sarnat, 2009: Meteorological mechanisms explaining thunderstorm-related asthma. Geogr. Compass, 3, 4563, doi:10.1111/j.1749-8198.2008.00195.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grundstein, A., S. E. Sarnat, M. Klein, J. M. Shepherd, L. Naeher, T. Mote, and P. Tolbert, 2008: Thunderstorm-associated asthma in Atlanta, Georgia. Thorax, 63, 659660, doi:10.1136/thx.2007.092882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halbert, K. T., W. G. Blumberg, and P. T. Marsh, 2015: SHARPpy: Fueling the Python cult. Fifth Symp. on Advances in Modeling and Analysis Using Python, Phoenix, AZ, Amer. Meteor. Soc., 1.402. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Manuscript/Paper270233/sharppy_extended_abstract_draft1.pdf.]

  • Higham, J., K. Venables, E. Kopek, and M. Bajekal, 1997: Asthma and thunderstorms: Description of an epidemic in general practice in Britain using data from a doctors’ deputizing service in the UK. J. Epidemiol. Community Health, 51, 233238, doi:10.1136/jech.51.3.233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inspector-General for Emergency Management, 2017: Review of response to the thunderstorm asthma event of 21–22 November 2016.Victoria State Government Preliminary Rep., 68 pp. [Available online at http://www.igem.vic.gov.au/documents/CD/17/50253.]

  • Knox, R. B., 1993: Grass pollen, thunderstorms and asthma. Clin. Exp. Allergy, 23, 354359, doi:10.1111/j.1365-2222.1993.tb00339.x.

  • Marks, G. B., and R. K. Bush, 2007: It’s blowing in the wind: New insights into thunderstorm related asthma. J. Allergy Clin. Immunol., 120, 530532, doi:10.1016/j.jaci.2007.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, G. B., J. R. Colquhoun, S. T. Girgis, M. H. Koski, A. B. Treloar, P. Hansen, S. H. Downs, and N. G. Car, 2001: Thunderstorm outflows preceding epidemics of asthma during spring and summer. Thorax, 56, 468471, doi:10.1136/thorax.56.6.468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, G. A., and J. R. Colquhoun, 1998: Objective prediction of severe thunderstorm environments: Preliminary results linking a decision tree with an operational regional NWP model. Wea. Forecasting, 13, 10781092, doi:10.1175/1520-0434(1998)013<1078:OPOSTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., J. Frank, and D. Vollaro, 2013: Convective bursts, downdraft cooling, and boundary layer recovery in a sheared tropical storm. Mon. Wea. Rev., 141, 10481060, doi:10.1175/MWR-D-12-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, V., K. Venables, T. Laing-Morton, M. Partridge, J. Thurston, and D. Williams, 1994: Epidemic of asthma possibly related to thunderstorms. BMJ, 309, 131132, doi:10.1136/bmj.309.6947.131c.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasser, S. M., and T. B. Pulimood, 2009: Allergens and thunderstorm asthma. Curr. Allergy Asthma Rep., 9, 384390, doi:10.1007/s11882-009-0056-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Weather Service, 2016: Overview of downward convective available potential energy (DCAPE). Accessed 10 December 2016. [Available online at http://www.weather.gov/media/lmk/soo/DCAPE_Web.pdf.]

  • Newson, R., D. Strachan, E. Archibald, J. Emberlin, P. Hardaker, and C. Collier, 1998: Acute asthma epidemics, weather and pollen in England, 1987–1994. Eur. Respir. J., 11, 694701, doi:10.1183/09031936.98.11030694.

    • Search Google Scholar
    • Export Citation
  • Packe, G. E., and J. G. Ayres, 1985: Asthma outbreak during a thunderstorm. Lancet, 326, 199204, doi:10.1016/S0140-6736(85)91510-7.

  • Pryor, K. L., 2015: Progress and developments of downburst prediction applications of GOES. Wea. Forecasting, 30, 11821200, doi:10.1175/WAF-D-14-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suphioglu, C., 1998: Thunderstorm asthma due to grass pollen. Int. Arch. Allergy Immunol., 116, 253260, doi:10.1159/000023953.

  • Taylor, P. E., and H. Jonsson, 2004: Thunderstorm asthma. Curr. Allergy Asthma Rep., 4, 409413, doi:10.1007/s11882-004-0092-3.

  • Taylor, P. E., K. W. Jacobson, J. M. House, and M. M. Glovsky, 2007: Links between pollen, atopy and the asthma epidemic. Int. Arch. Allergy Immunol., 144, 162170, doi:10.1159/000103230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaidyanathan, V., A. G. Miguel, P. E. Taylor, R. C. Flagan, and M. M. Glovsky, 2006: Effects of electric fields on pollen rupture. J. Allergy Clin. Immunol., 117, S157, doi:10.1016/j.jaci.2005.12.625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venables, K. M., and Coauthors, 1997: Thunderstorm-related asthma—The epidemic of 24/25 June 1994. Clin. Exp. Allergy, 27, 725736, doi:10.1046/j.1365-2222.1997.790893.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R., 1985: Forecasting dry microburst activity over the High Plains. Mon. Wea. Rev., 113, 11311143, doi:10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whelan, M., 2016: ‘Thunderstorm asthma’ strikes Ballarat. Courier, 23 November. [Available online at http://www.thecourier.com.au/story/4308137/thunderstorm-asthma-strikes-ballarat/.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3048 782 73
PDF Downloads 1062 197 1