An Improved QPE over Complex Terrain Employing Cloud-to-Ground Lightning Occurrences

Carlos Manuel Minjarez-Sosa Departamento de Física, Universidad de Sonora, Hermosillo, Sonora, Mexico

Search for other papers by Carlos Manuel Minjarez-Sosa in
Current site
Google Scholar
PubMed
Close
,
Christopher L. Castro Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Christopher L. Castro in
Current site
Google Scholar
PubMed
Close
,
Kenneth L. Cummins Department of Atmospheric Sciences, The University of Arizona, and Vaisala, Inc., Tucson, Arizona

Search for other papers by Kenneth L. Cummins in
Current site
Google Scholar
PubMed
Close
,
Julio Waissmann Departamento de Matemáticas, Universidad de Sonora, Hermosillo, Sonora, Mexico

Search for other papers by Julio Waissmann in
Current site
Google Scholar
PubMed
Close
, and
David K. Adams Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico, Mexico

Search for other papers by David K. Adams in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A lightning–precipitation relationship (LPR) is studied at high temporal and spatial resolution (5 min and 5 km). As a proof of concept of these methods, precipitation data are retrieved from the National Severe Storms Laboratory (NSSL) NMQ product for southern Arizona and western Texas while lightning data are provided by the National Lightning Detection Network (NLDN). A spatial- and time-invariant (STI) linear model that considers spatial neighbors and time lags is proposed. A data denial analysis is performed over Midland, Texas (a region with good sensor coverage), with this STI model. The LPR is unchanged and essentially equal, regardless of the domain (denial or complete) used to obtain the STI model coefficients. It is argued that precipitation can be estimated over regions with poor sensor coverage (i.e., southern Arizona) by calibrating the LPR over well-covered domains that are experiencing similar storm conditions. To obtain a lightning-estimated precipitation that dynamically updates the model coefficients in time, a Kalman filter is applied to the STI model. The correlation between the observed and estimated precipitation is statistically significant for both models, but the Kalman filter provides a better precipitation estimation. The best demonstration of this application is a heavy-precipitation, high-frequency lightning event in southern Arizona over a region with poor radar and rain gauge coverage. By calibrating the Kalman filter over a data-covered domain, the lightning-estimated precipitation is considerably greater than that estimated by radar alone. Therefore, for regions where both rain gauge and radar data are compromised, lightning provides a viable alternative for improving QPE.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carlos Manuel Minjarez-Sosa, cminjarez@correo.fisica.uson.mx

Abstract

A lightning–precipitation relationship (LPR) is studied at high temporal and spatial resolution (5 min and 5 km). As a proof of concept of these methods, precipitation data are retrieved from the National Severe Storms Laboratory (NSSL) NMQ product for southern Arizona and western Texas while lightning data are provided by the National Lightning Detection Network (NLDN). A spatial- and time-invariant (STI) linear model that considers spatial neighbors and time lags is proposed. A data denial analysis is performed over Midland, Texas (a region with good sensor coverage), with this STI model. The LPR is unchanged and essentially equal, regardless of the domain (denial or complete) used to obtain the STI model coefficients. It is argued that precipitation can be estimated over regions with poor sensor coverage (i.e., southern Arizona) by calibrating the LPR over well-covered domains that are experiencing similar storm conditions. To obtain a lightning-estimated precipitation that dynamically updates the model coefficients in time, a Kalman filter is applied to the STI model. The correlation between the observed and estimated precipitation is statistically significant for both models, but the Kalman filter provides a better precipitation estimation. The best demonstration of this application is a heavy-precipitation, high-frequency lightning event in southern Arizona over a region with poor radar and rain gauge coverage. By calibrating the Kalman filter over a data-covered domain, the lightning-estimated precipitation is considerably greater than that estimated by radar alone. Therefore, for regions where both rain gauge and radar data are compromised, lightning provides a viable alternative for improving QPE.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carlos Manuel Minjarez-Sosa, cminjarez@correo.fisica.uson.mx
Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, D. K., and E. P. Souza, 2009: CAPE and convective events in the southwest during the North American monsoon. Mon. Wea. Rev., 137, 8398, doi:10.1175/2008MWR2502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, G. D., J. A. Weinman, V. Karyampudi, W. S. Olson, and A. C. L. Lee, 1999: The effect of assimilating rain rates derived from satellites and lightning on forecasts of the 1993 Superstorm. Mon. Wea. Rev., 127, 14331457, doi:10.1175/1520-0493(1999)127<1433:TEOARR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alpuim, T., and S. Barbosa, 1999: The Kalman filter in the estimation of area precipitation. Environmetrics, 10, 377394, doi:10.1002/(SICI)1099-095X(199907/08)10:4<377::AID-ENV363>3.0.CO;2-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anagnostou, E., 2004: Overview of overland satellite rainfall estimation for hydro-meteorological applications. Surv. Geophys., 25, 511537, doi:10.1007/s10712-004-5724-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Apodaca, K., M. Zupanski, M. DeMaria, J. A. Knaff, and L. D. Grasso, 2014: Development of a hybrid variational-ensemble data assimilation technique for observed lightning tested in a mesoscale model. Nonlinear Processes Geophys., 21, 10271041, doi:10.5194/npg-21-1027-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. B., H. J. Christian, and J. Latham, 1995: A computational study of the relationships linking lightning frequency and other thundercloud parameters. Quart. J. Roy. Meteor. Soc., 121, 15251548, doi:10.1002/qj.49712152703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1965: Some factors governing precipitation and lightning from convective clouds. J. Atmos. Sci., 22, 7985, doi:10.1175/1520-0469(1965)022<0079:SFGPAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., J. Vivekanandan, and J. W. Wilson, 1999: A comparison of radar reflectivity estimates of rainfall from collocated radars. J. Atmos. Oceanic Technol., 16, 12641272, doi:10.1175/1520-0426(1999)016<1264:ACORRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosson, W. L., C. E. Duchon, R. Raghavan, and S. J. Goodman, 1996: Assessment of rainfall estimates using a standard Z–R relationship and the probability matching method applied to composite radar data in central Florida. J. Appl. Meteor., 35, 12031219, doi:10.1175/1520-0450(1996)035<1203:AOREUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518, doi:10.1109/TEMC.2009.2023450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, C. L. Ziegler, and D. R. MacGorman, 2012: Application of a lightning data assimilation technique in the WRF-ARW model at cloud-resolving scales for the tornado outbreak of 24 May 2011. Mon. Wea. Rev., 140, 26092627, doi:10.1175/MWR-D-11-00299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., J. Gao, C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and S. R. Dembek, 2014: Evaluation of a cloud-scale lightning data assimilation technique and a 3DVAR method for the analysis and short-term forecast of the 29 June 2012 derecho event. Mon. Wea. Rev., 142, 183202, doi:10.1175/MWR-D-13-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., 1999: Sensitivity of WSR-88D rainfall estimates to the rain-rate threshold and rain gauge adjustment: A flash flood case study. Wea. Forecasting, 14, 604624, doi:10.1175/1520-0434(1999)014<0604:SOWRET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., 2008: Dryline characteristics near Lubbock, Texas, based on radar and West Texas Mesonet data for May 2005 and May 2006. Wea. Forecasting, 23, 392406, doi:10.1175/2007WAF2007044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gungle, B., and E. P. Krider, 2006: Cloud-to-ground lightning and surface rainfall in warm-season Florida thunderstorms. J. Geophys. Res., 111, D19203, doi:10.1029/2005JD006802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., and W. Krajewski, 2002: Uncertainty analysis of the TRMM ground-validation radar-rainfall products: Application to the TEFLUN-B field campaign. J. Appl. Meteor., 41, 558572, doi:10.1175/1520-0450(2002)041<0558:UAOTTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, W., Y. Yao, and X. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 26002622, doi:10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacques, A. A., J. P. Koermer, and T. R. Boucher, 2011: Comparison of the United States Precision Lightning Network (USPLN) and the Cloud-to-Ground Lightning Surveillance System (CGLSS-II). Fifth Conf. on the Meteorological Applications of Lightning Data, Seattle, WA, Amer. Meteor. Soc., 315. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Manuscript/Paper185527/USPLN_Extended_Abstract_AMS_Annual_Jacques.pdf.]

  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitzmiller, D., D. Miller, R. Fulton, and F. Ding, 2013: Radar and multisensor precipitation estimation techniques in National Weather Service hydrologic operations. J. Hydrol. Eng., 18, 133142, doi:10.1061/(ASCE)HE.1943-5584.0000523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and J. A. Smith, 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 13871394, doi:10.1016/S0309-1708(02)00062-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, A. L., and X. Zeng, 2006: Areal estimation of intensity and frequency of summertime precipitation over a midlatitude region. Geophys. Res. Lett., 33, L22401, doi:10.1029/2006GL027393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langston, C., J. Zhang, and K. Howard, 2007: Four-dimensional dynamic radar mosaic. J. Atmos. Oceanic Technol., 24, 776790, doi:10.1175/JTECH2001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latham, J., A. M. Blyth, H. J. Christian Jr., W. Deierling, and A. M. Gadian, 2004: Determination of precipitation rates and yields from lightning measurements. J. Hydrol., 288, 1319, doi:10.1016/j.jhydrol.2003.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latham, J., W. A. Petersen, W. Dejerling, and H. J. Christian, 2007: Field identification of a unique globally dominant mechanism of thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 133, 14531457, doi:10.1002/qj.133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., and P. R. Krehbiel, 1979: Doppler radar and radio observations of thunderstorms. IEEE Trans. Geosci. Electron., 17, 162171, doi:10.1109/TGE.1979.294644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/pdfpapers/83847.pdf.]

  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013, doi:10.1175/2007BAMS2352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., D. M. McCollum, and K. W. Howard, 1995: Large-scale patterns associated with severe summertime thunderstorms over central Arizona. Wea. Forecasting, 10, 763778, doi:10.1175/1520-0434(1995)010<0763:LSPAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., J. Zhang, J. J. Gourley, and K. W. Howard, 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17, 927934, doi:10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2005: Charge structure in a simulated multicell thunderstorm. J. Geophys. Res., 110, D12101, doi:10.1029/2004JD005287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehran, A., and A. AghaKouchak, 2014: Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol. Processes, 28, 22602270, doi:10.1002/hyp.9779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minjarez-Sosa, C. M., 2013: Improved quantitative precipitation estimation over complex terrain using cloud-to-ground lightning data. Ph.D. dissertation, The University of Arizona, 117 pp. [Available online at http://arizona.openrepository.com/arizona/bitstream/10150/293749/1/azu_etd_12726_sip1_m.pdf.]

  • Minjarez-Sosa, C. M., C. L. Castro, K. L. Cummins, E. P. Krider, and J. Waissman, 2012: Improved QPE in complex terrain using cloud-to-ground lightning data: A case study for the 2005 monsoon in southern Arizona. J. Hydrometeor., 13, 18551873, doi:10.1175/JHM-D-11-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morin, E., and M. Gabella, 2007: Radar-based quantitative precipitation estimation over Mediterranean and dry climate regimes. J. Geophys. Res., 112, D20108, doi:10.1029/2006JD008206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morin, E., R. A. Maddox, D. C. Goodrich, and S. Sorooshian, 2005: Radar Z–R relationship for summer monsoon storms in Arizona. Wea. Forecasting, 20, 672679, doi:10.1175/WAF878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pessi, A. T., and S. Bussinger, 2009: The impact of lightning data assimilation on a winter storm simulation over the North Pacific Ocean. Mon. Wea. Rev., 137, 31773195, doi:10.1175/2009MWR2765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and S. A. Rutledge, 1998: On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res., 103, 14 02514 040, doi:10.1029/97JD02064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piepgrass, M. V., E. P. Krider, and C. B. Moore, 1982: Lightning and surface rainfall during Florida thunderstorms. J. Geophys. Res., 87, 11 19311 201, doi:10.1029/JC087iC13p11193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, C., and Coauthors, 2011: The FLASH project: Using lightning data to better understand and predict flash floods. Environ. Sci. Policy, 14, 898911, doi:10.1016/j.envsci.2011.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reap, R. M., and D. R. MacGorman, 1989: Cloud-to-ground lightning: Climatological characteristics and relationships to model fields, radar observations, and severe local storms. Mon. Wea. Rev., 117, 518525, doi:10.1175/1520-0493(1989)117<0518:CTGLCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and D. R. MacGorman, 1988: Cloud-to-ground lightning activity in the 10–11 June 1985 mesoscale convective system observed during the Oklahoma–Kansas PRE-STORM Project. Mon. Wea. Rev., 116, 13931408, doi:10.1175/1520-0493(1988)116<1393:CTGLAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saylor, J. R., C. W. Ulbrich, J. W. Ballentine, and J. L. Lapp, 2005: The correlation between lightning and DSD parameters. IEEE Trans. Geosci. Remote Sens., 43, 18061815, doi:10.1109/TGRS.2005.851638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. P., and R. L. Gall, 1989: Tropical squall lines of the Arizona monsoon. Mon. Wea. Rev., 117, 15531569, doi:10.1175/1520-0493(1989)117<1553:TSLOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soula, S., and S. Chauzy, 2001: Some aspects of the correlation between lightning and rain activities in thunderstorms. J. Atmos. Res., 56, 355373, doi:10.1016/S0169-8095(00)00086-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stellman, K. M., H. E. Fuelberg, R. Garza, and M. Mullusky, 2001: An examination of radar and rain gauge–derived mean areal precipitation over Georgia watersheds. Wea. Forecasting, 16, 133144, doi:10.1175/1520-0434(2001)016<0133:AEORAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapia, A., J. A. Smith, and M. Dixon, 1998: Estimation of convective rainfall from lightning observations. J. Appl. Meteor., 37, 14971509, doi:10.1175/1520-0450(1998)037<1497:EOCRFL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137151, doi:10.2151/jmsj.87A.137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vasiloff, S., and Coauthors, 2007: Improving QPE and very short term QPF: An initiative for a community-wide integrated approach. Bull. Amer. Meteor. Soc., 88, 18991911, doi:10.1175/BAMS-88-12-1899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., P. V. Mandapaka, W. F. Krajewski, and R. J. Moore, 2008: Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res., 113, D11102, doi:10.1029/2007JD009214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, doi:10.1175/JAS3615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., D. Kitzmiller, and S. Wu, 2012: Evaluation of radar precipitation estimates from the National Mosaic and Quantitative Precipitation Estimation System and the WSR-88D Precipitation Processing System over the conterminous United States. J. Hydrometeor., 13, 10801093, doi:10.1175/JHM-D-11-064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1995: An intercomparison of gauge observations and satellite estimates of monthly precipitation. J. Appl. Meteor. Climatol., 34, 11431160, doi:10.1175/1520-0450(1995)034<1143:AIOGOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., F. Adler, and N. Wang, 2013: Improving geostationary satellite rainfall estimates using lightning observations: Underlying lightning–rainfall–cloud relationships. J. Appl. Meteor. Climatol., 52, 213229, doi:10.1175/JAMC-D-12-040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zahraei, A., K.-L. Hsu, S. Sorooshian, J. J. Gourley, Y. Hong, and A. Behrangi, 2013: Short-term quantitative precipitation forecasting using an object-based approach. J. Hydrol., 483, 115, doi:10.1016/j.jhydrol.2012.09.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., L. Zhang, D. Hansford, A. Radzan, N. Selover, and C. M. Brown, 2006: Using digital cloud photogrammetry to characterize the onset and transition from shallow to deep convection over orography. Mon. Wea. Rev., 134, 25272546, doi:10.1175/MWR3194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) System: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., Y. Qi, C. Langston, B. Kaney, and K. Howard, 2014: A real-time algorithm for merging radar QPEs with rain gauge observations and orographic precipitation climatology. J. Hydrometeor., 15, 17941806, doi:10.1175/JHM-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, doi:10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 174 60 10
PDF Downloads 105 17 2