Downscaling Extreme Precipitation from CMIP5 Simulations Using Historical Analogs

Christopher M. Castellano Northeast Regional Climate Center, Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by Christopher M. Castellano in
Current site
Google Scholar
PubMed
Close
and
Arthur T. DeGaetano Northeast Regional Climate Center, Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by Arthur T. DeGaetano in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An approach for downscaling daily precipitation extremes using historical analogs is applied to simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The method employs a multistep procedure in which the occurrence of extreme precipitation on a given target day is determined on the basis of the probability of extreme precipitation on that day’s closest historical analogs. If extreme precipitation is expected, daily precipitation observations associated with the historical analogs are used to approximate precipitation amounts on the target day. By applying the analog method to historical simulations, the ability of the CMIP5 models to simulate synoptic weather patterns associated with extreme precipitation is assessed. Differences between downscaled and observed precipitation extremes are investigated by comparing the precipitation frequency distributions for a subset of rarely selected extreme analog days with those for all observed days with extreme precipitation. A supplemental composite analysis of the synoptic weather patterns on these rarely selected analog days is utilized to elucidate the meteorological factors that contribute to such discrepancies. Overall, the analog method as applied to CMIP5 simulations yields realistic estimates of historical precipitation extremes, with return-period precipitation biases that are comparable in magnitude to those obtained from dynamically downscaled simulations. The analysis of rarely selected analog days reveals that precipitation amounts on these days are generally larger than precipitation amounts on all days with extreme precipitation, leading to an underestimation of return-period precipitation amounts at many stations. Furthermore, the synoptic composite analysis reveals that tropical cyclones are a common feature on these rarely selected analog days.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher Castellano, cmc254@cornell.edu

Abstract

An approach for downscaling daily precipitation extremes using historical analogs is applied to simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The method employs a multistep procedure in which the occurrence of extreme precipitation on a given target day is determined on the basis of the probability of extreme precipitation on that day’s closest historical analogs. If extreme precipitation is expected, daily precipitation observations associated with the historical analogs are used to approximate precipitation amounts on the target day. By applying the analog method to historical simulations, the ability of the CMIP5 models to simulate synoptic weather patterns associated with extreme precipitation is assessed. Differences between downscaled and observed precipitation extremes are investigated by comparing the precipitation frequency distributions for a subset of rarely selected extreme analog days with those for all observed days with extreme precipitation. A supplemental composite analysis of the synoptic weather patterns on these rarely selected analog days is utilized to elucidate the meteorological factors that contribute to such discrepancies. Overall, the analog method as applied to CMIP5 simulations yields realistic estimates of historical precipitation extremes, with return-period precipitation biases that are comparable in magnitude to those obtained from dynamically downscaled simulations. The analysis of rarely selected analog days reveals that precipitation amounts on these days are generally larger than precipitation amounts on all days with extreme precipitation, leading to an underestimation of return-period precipitation amounts at many stations. Furthermore, the synoptic composite analysis reveals that tropical cyclones are a common feature on these rarely selected analog days.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher Castellano, cmc254@cornell.edu
Save
  • Allen, R. J., and A. T. DeGaetano, 2005: Areal reduction factors for two eastern United States regions with high rain-gauge density. J. Hydrol. Eng., 10, 327335, doi:10.1061/(ASCE)1084-0699(2005)10:4(327).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., L. F. Bosart, D. Keyser, and A. R. Aiyyer, 2008: Influence of large-scale flow regimes on cool-season precipitation in the northeastern United States. Mon. Wea. Rev., 136, 29452963, doi:10.1175/2007MWR2308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., 2010: Downscaling precipitation extremes: Correction of analog models through PDF predictions. Theor. Appl. Climatol., 100, 121, doi:10.1007/s00704-009-0158-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., L. Terray, F. Habets, and E. Martin, 2006: A simple statistical-dynamical downscaling scheme based on weather types and conditional resampling. J. Geophys. Res., 111, D23106, doi:10.1029/2005JD006889.

    • Search Google Scholar
    • Export Citation
  • Brekke, L., B. L. Thrasher, E. P. Maurer, and T. Pruitt, 2013: Downscaled CMIP3 and CMIP5 climate and hydrology projections: Release of downscaled CMIP5 projections, comparison with preceding information, and summary of user needs. U.S. Dept. of the Interior Bureau of Reclamation Rep., 47 pp. [Available online at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_climate.pdf.]

  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, doi:10.1175/JCLI-D-12-00549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castellano, C. M., and A. T. DeGaetano, 2016: A multi-step approach for downscaling daily precipitation extremes from historical analogues. Int. J. Climatol., 36, 17971807, doi:10.1002/joc.4460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and O. B. Christensen, 2003: Climate modelling: Severe summertime flooding in Europe. Nature, 421, 805806, doi:10.1038/421805a.

  • Cote, M. R., 2007: Predecessor rain events in advance of tropical cyclones. M.S. thesis, Dept. of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 200 pp.

  • Dayan, U., K. Nissen, and U. Ulbrich, 2015: Review article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean. Nat. Hazards Earth Syst. Sci., 15, 25252544, doi:10.5194/nhess-15-2525-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., 1998: A Smirnov test-based clustering algorithm with application to extreme precipitation data. Water Resour. Res., 34, 169176, doi:10.1029/97WR03133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., 2009: Time-dependent changes in extreme-precipitation return-period amounts in the continental United States. J. Appl. Meteor. Climatol., 48, 20862099, doi:10.1175/2009JAMC2179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, J. M., and M. Widmann, 2014: Downscaling of GCM-simulated precipitation using model output statistics. J. Climate, 27, 312324, doi:10.1175/JCLI-D-13-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., C. A. Schlosser, P. Xie, E. Monier, and D. Entekhabi, 2014: An analogue approach to identify heavy precipitation events: Evaluation and application to CMIP5 climate models in the United States. J. Climate, 27, 59415963, doi:10.1175/JCLI-D-13-00598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, and T. R. Karl, 2012: Changes in intense precipitation over the central United States. J. Hydrometeor., 13, 4766, doi:10.1175/JHM-D-11-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutiérrez, J. M., D. San-Martín, S. Brands, R. Manzanas, and S. Herrera, 2013: Reassessing statistical downscaling techniques for their robust application under climate change conditions. J. Climate, 26, 171188, doi:10.1175/JCLI-D-11-00687.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutmann, E., T. Pruitt, M. P. Clark, L. Brekke, J. R. Arnold, D. A. Raff, and R. M. Rasmussen, 2014: An intercomparison of statistical downscaling methods used for water resources assessments in the United States. Water Resour. Res., 50, 71677186, doi:10.1002/2014WR015559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., G. C. Cawley, C. Harpham, R. L. Wilby, and C. M. Goodess, 2006: Downscaling heavy precipitation over the United Kingdom: A comparison of dynamical and statistical methods and their future scenarios. Int. J. Climatol., 26, 13971415, doi:10.1002/joc.1318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, X., N. W. Chaney, M. Schleiss, and J. Sheffield, 2016: Spatial downscaling of precipitation using adaptable random forests. Water Resour. Res., 52, 82178237, doi:10.1002/2016WR019034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heideman, K. F., and J. M. Fritsch, 1988: Forcing mechanisms and other characteristics of significant summertime precipitation. Wea. Forecasting, 3, 115130, doi:10.1175/1520-0434(1988)003<0115:FMAOCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heineman, M., 2012: Trends in precipitation maxima at U.S. Historical Climatology Network stations: 1893–2010. Proc. World Environmental and Water Resources Congress 2012, Albuquerque, NM, American Society of Civil Engineers, 2003–2012, doi:10.1061/9780784412312.201.

    • Crossref
    • Export Citation
  • Hidalgo, H. G., M. D. Dettinger, and D. R. Cayan, 2008: Downscaling with constructed analogues: Daily precipitation and temperature fields over the United States. California Energy Commission Public Interest Energy Research Program Rep. CEC-500-2007-123, 62 pp. [Available online at http://www.energy.ca.gov/2007publications/CEC-500-2007-123/CEC-500-2007-123.PDF.]

  • Hosking, J. R. M., and J. R. Wallis, 1997: Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, 244 pp.

    • Crossref
    • Export Citation
  • Imbert, A., and R. E. Benestad, 2005: An improvement of analog model strategy for more reliable local climate change scenarios. Theor. Appl. Climatol., 82, 245255, doi:10.1007/s00704-005-0133-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Summary for policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability, C. B. Field et al., Eds., Cambridge University Press, 1–32. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/ar5_wgII_spm_en.pdf.]

  • Jones, C., F. Giorgi, and G. Asrar, 2011: The Coordinated Regional Downscaling Experiment: CORDEX—An international downscaling link to CMIP5. CLIVAR Exchanges, No. 56, International CLIVAR Project Office, Southampton, United Kingdom, 34–40. [Available online at http://www.clivar.org/sites/default/files/documents/Exchanges56.pdf.]

  • Junker, N. W., R. H. Grumm, R. Hart, L. F. Bosart, K. M. Bell, and F. J. Pereira, 2008: Use of normalized anomaly fields to anticipate extreme rainfall in the mountains of northern California. Wea. Forecasting, 23, 336356, doi:10.1175/2007WAF2007013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., J. M. Melillo, and T. C. Peterson, Eds., 2009: Global Climate Change Impacts in the United States. Cambridge University Press, 189 pp.

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, doi:10.1175/JCLI-D-12-00539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., 1997: Synoptic-scale features associated with warm season heavy rainfall over the interior southeastern United States. Wea. Forecasting, 12, 557571, doi:10.1175/1520-0434(1997)012<0557:SSFAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., 2003: North American trends in extreme precipitation. Nat. Hazards, 29, 291305, doi:10.1023/A:1023694115864.

  • Kunkel, K. E., K. Andsager, and D. R. Easterling, 1999: Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Climate, 12, 25152527, doi:10.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, doi:10.1175/JHM-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., L. E. Stevens, S. E. Stevens, L. Sun, E. Janssen, D. Wuebbles, and J. G. Dobson, 2013: Regional trends and scenarios for the U.S. national climate assessment: Part 9. Climate of the contiguous United States. NOAA Tech. Rep. NESDIS 142-9, 85 pp. [Available online at https://www.nesdis.noaa.gov/sites/default/files/asset/document/NOAA_NESDIS_Tech_Report_142-9-Climate_of_the_Contiguous_United_States.pdf.]

  • LaPenta, K. D., and Coauthors, 1995: The challenge of forecasting heavy rain and flooding throughout the Eastern Region of the National Weather Service. Part I: Characteristics and events. Wea. Forecasting, 10, 7890, doi:10.1175/1520-0434(1995)010<0078:TCOFHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636646, doi:10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, doi:10.1175/1520-0477-60.2.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matulla, C., X. Zhang, X. L. Wang, J. Wang, E. Zorita, S. Wagner, and H. von Storch, 2008: Influence of similarity measures on the performance of the analog method for downscaling daily precipitation. Climate Dyn., 30, 133144, doi:10.1007/s00382-007-0277-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., W. J. Gutowski, R. Jones, L.-Y. Leung, S. McGinnis, A. M. B. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311312, doi:10.1029/2009EO360002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., S. Xie, and M. Zhao, 2014: Variability of tropical cyclone track intensity in the North Atlantic: Observations and high-resolution simulations. J. Climate, 27, 47974814, doi:10.1175/JCLI-D-13-00587.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, J., 1999: An evaluation of statistical and dynamical techniques for downscaling local climate. J. Climate, 12, 22562284, doi:10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perica, S., and Coauthors, 2013: Precipitation-frequency atlas of the United States. NOAA Atlas 14, Vol. 9, version 2.0, 43 pp. [Available online at http://www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume9.pdf.]

  • Ribalaygua, J., L. Torres, J. Pórtoles, R. Monjo, E. Gaitán, and M. R. Pino, 2013: Description and validation of a two-step analogue/regression downscaling method. Theor. Appl. Climatol., 114, 253269, doi:10.1007/s00704-013-0836-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., G. Villarini, and M. L. Baeck, 2011: Mixture distributions and the hydroclimatology of extreme rainfall and flooding in the eastern United States. J. Hydrometeor., 12, 294309, doi:10.1175/2010JHM1242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tryhorn, L., and A. T. DeGaetano, 2011: A comparison of techniques for downscaling extreme precipitation over the northeastern United States. Int. J. Climatol., 31, 19751989, doi:10.1002/joc.2208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Dool, H. M., 1994: Searching for analogues, how long must we wait? Tellus, 46A, 314324, doi:10.3402/tellusa.v46i3.15481.

  • van den Dool, H. M., J. Huang, and Y. Fan, 2003: Performance and analysis of the constructed analogue method applied to U.S. soil moisture over 1981–2001. J. Geophys. Res., 108, 8617, doi:10.1029/2002JD003114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., J. A. Smith, and G. A. Vecchi, 2013: Changing frequency of heavy rainfall over the central United States. J. Climate, 26, 351357, doi:10.1175/JCLI-D-12-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K., S. Lavender, E. Scoccimarro, and H. Murakami, 2013: Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dyn., 40, 585599, doi:10.1007/s00382-012-1298-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, J. H., 1963: Hierarchical grouping to optimize an objective function. J. Amer. Stat. Assoc., 58, 236244, doi:10.1080/01621459.1963.10500845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetterhall, F., S. Halldin, and C.-Y. Xu, 2005: Statistical precipitation downscaling in central Sweden with the analogue method. J. Hydrol., 306, 174190, doi:10.1016/j.jhydrol.2004.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., and T. M. L. Wigley, 1997: Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geogr., 21, 530548, doi:10.1177/030913339702100403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., C. W. Dawson, and E. M. Barrow, 2002: SDSM—A decision support tool for the assessment of regional climate change impacts. Environ. Modell. Software, 17, 145157, doi:10.1016/S1364-8152(01)00060-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., S. P. Charles, E. Zorita, B. Timbal, P. Whetton, and L. O. Mearns, 2004: Guidelines for use of climate scenarios developed from statistical downscaling methods. IPCC Task Group on Data and Scenario Support for Impact and Climate Analysis Rep., 27 pp. [Available online at http://www.ipcc-data.org/guidelines/dgm_no1_v1_10-2003.pdf.]

  • Wilks, D. S., 1993: Comparison of three-parameter probability distributions for representing annual extreme and partial duration precipitation series. Water Resour. Res., 29, 35433549, doi:10.1029/93WR01710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., and R. P. Cember, 1993: Atlas of precipitation extremes for the northeastern United States and southeastern Canada. Northeast Regional Climate Center Research Rep. RR 93-5, 40 pp. [Available online at http://www.nrcc.cornell.edu/services/research/reports/RR_93-5.pdf.]

  • Winkler, J. A., 1988: Characteristics of summertime extreme rainstorms in Minnesota. Ann. Assoc. Amer. Geogr., 78, 5773, doi:10.1111/j.1467-8306.1988.tb00191.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zorita, E., and H. von Storch, 1999: The analog method as a simple statistical downscaling technique: Comparison with more complicated methods. J. Climate, 12, 24742489, doi:10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 479 117 8
PDF Downloads 432 67 2