Scale Characterization and Correction of Diurnal Cycle Errors in MAPLE

Aitor Atencia Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Aitor Atencia in
Current site
Google Scholar
PubMed
Close
,
Isztar Zawadzki Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Isztar Zawadzki in
Current site
Google Scholar
PubMed
Close
, and
Marc Berenguer Centre de Recerca Aplicada en Hidrometeorologia, Universitat Politècnica de Catalunya, Barcelona, Spain

Search for other papers by Marc Berenguer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The most widely used technique for nowcasting of quantitative precipitation in operational and research centers is the Lagrangian extrapolation of the latest radar observations. However, this technique has a limited forecast skill because of the assumption made on its formulation, such as the fact that the motion vectors do not change and, even more important for convective events, neglect any growth or decay in the precipitation field. In this work, the McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) errors have been computed for 10 yr of radar composite data over the continental United States. The study of these errors shows systematic bias depending on the time of day. This effect is related to the solar cycle, whose heating energy results in an increase in the average rainfall in the afternoon. This external forcing interacts with the atmospheric system, creating local initiation and dissipation of convection depending on orography, land use, cloud coverage, etc. The signal of the diurnal cycle in MAPLE precipitation forecast has been studied in different locations and spatial scales as a function of lead time in order to recognize where, when, and for which spatial scales the signal is significant. This information has been used in the development of a scaling correction scheme where the mean errors due to the diurnal cycle are adjusted. The results show that the developed methodology improves the forecast for the spatial scales and locations where the diurnal cycle signal is significant.

Current affiliation: Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aitor Atencia, aitor.atencia@zamg.ac.at

Abstract

The most widely used technique for nowcasting of quantitative precipitation in operational and research centers is the Lagrangian extrapolation of the latest radar observations. However, this technique has a limited forecast skill because of the assumption made on its formulation, such as the fact that the motion vectors do not change and, even more important for convective events, neglect any growth or decay in the precipitation field. In this work, the McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) errors have been computed for 10 yr of radar composite data over the continental United States. The study of these errors shows systematic bias depending on the time of day. This effect is related to the solar cycle, whose heating energy results in an increase in the average rainfall in the afternoon. This external forcing interacts with the atmospheric system, creating local initiation and dissipation of convection depending on orography, land use, cloud coverage, etc. The signal of the diurnal cycle in MAPLE precipitation forecast has been studied in different locations and spatial scales as a function of lead time in order to recognize where, when, and for which spatial scales the signal is significant. This information has been used in the development of a scaling correction scheme where the mean errors due to the diurnal cycle are adjusted. The results show that the developed methodology improves the forecast for the spatial scales and locations where the diurnal cycle signal is significant.

Current affiliation: Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aitor Atencia, aitor.atencia@zamg.ac.at
Save
  • Addison, P. S., 2002: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance. CRC Press, 368 pp.

    • Crossref
    • Export Citation
  • Atencia, A., and I. Zawadzki, 2014: A comparison of two techniques for generating nowcasting ensembles. Part I: Lagrangian ensemble technique. Mon. Wea. Rev., 142, 40364052, doi:10.1175/MWR-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atencia, A., and I. Zawadzki, 2015: A comparison of two techniques for generating nowcasting ensembles. Part II: Analogs selection and comparison of techniques. Mon. Wea. Rev., 143, 28902908, doi:10.1175/MWR-D-14-00342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berenguer, M., C. Corral, R. Sánchez-Diezma, and D. Sempere-Torres, 2005: Hydrological validation of a radar-based nowcasting technique. J. Hydrometeor., 6, 532549, doi:10.1175/JHM433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berenguer, M., D. Sempere-Torres, and G. G. Pegram, 2011: SBMcast—An ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation. J. Hydrol., 404, 226240, doi:10.1016/j.jhydrol.2011.04.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berenguer, M., M. Surcel, I. Zawadzki, M. Xue, and F. Kong, 2012: The diurnal cycle of precipitation from continental radar mosaics and numerical weather prediction models. Part II: Intercomparison among numerical models and with nowcasting. Mon. Wea. Rev., 140, 26892705, doi:10.1175/MWR-D-11-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., C. E. Pierce, and A. W. Seed, 2006: STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP. Quart. J. Roy. Meteor. Soc., 132, 21272155, doi:10.1256/qj.04.100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R., and J. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 41324146, doi:10.1175/2008JCLI2275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R., J. Tuttle, D. Ahijevych, and S. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 63776402, doi:10.1029/98JD02720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denis, B., J. Côté, and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon. Wea. Rev., 130, 18121829, doi:10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., and I. Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 28592873, doi:10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., I. Zawadzki, and B. Turner, 2006: Predictability of precipitation from continental radar images. Part IV: Limits to prediction. J. Atmos. Sci., 63, 20922108, doi:10.1175/JAS3735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haar, A., 1910: Zur theorie der orthogonalen funktionensysteme. Math. Ann., 69, 331371, doi:10.1007/BF01456326.

  • Hope, A. C., 1968: A simplified Monte Carlo significance test procedure. J. Roy. Stat. Soc., 30B, 582598.

  • Janowiak, J. E., V. E. Kousky, and R. J. Joyce, 2005: Diurnal cycle of precipitation determined from the CMORPH high spatial and temporal resolution global precipitation analyses. J. Geophys. Res., 110, D23105, doi:10.1029/2005JD006156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1969: Raindrop size distribution and sampling size errors. J. Atmos. Sci., 26, 566569, doi:10.1175/1520-0469(1969)026<0566:RSDASS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laroche, S., and I. Zawadzki, 1994: A variational analysis method for retrieval of three-dimensional wind field from single-Doppler radar data. J. Atmos. Sci., 51, 26642682, doi:10.1175/1520-0469(1994)051<2664:AVAMFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and D. A. Ahijevych, 2007: Convective episodes in the east-central United States. Mon. Wea. Rev., 135, 37073727, doi:10.1175/2007MWR2098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, S., and Coauthors, 2002: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415, 436442, doi:10.1038/415436a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seed, A., 2003: A dynamic and spatial scaling approach to advection forecasting. J. Appl. Meteor., 42, 381388, doi:10.1175/1520-0450(2003)042<0381:ADASSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Surcel, M., M. Berenguer, and I. Zawadzki, 2010: The diurnal cycle of precipitation from continental radar mosaics and numerical weather prediction models. Part I: Methodology and seasonal comparison. Mon. Wea. Rev., 138, 30843106, doi:10.1175/2010MWR3125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, doi:10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. A. Klein, 2010: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site. J. Atmos. Sci., 67, 29432959, doi:10.1175/2010JAS3366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., D. Kitzmiller, D.-J. Seo, D. Kim, and R. Cifelli, 2015: Creation of multisensor precipitation products from WSI NOWrad reflectivity data. J. Hydrol. Eng., 22, E401 5001, doi:10.1061/(ASCE)HE.1943-5584.0001216.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 247 69 9
PDF Downloads 122 17 3