The More Extreme Nature of North American Monsoon Precipitation in the Southwestern United States as Revealed by a Historical Climatology of Simulated Severe Weather Events

Thang M. Luong Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona, and Centro de la Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico

Search for other papers by Thang M. Luong in
Current site
Google Scholar
PubMed
Close
,
Christopher L. Castro Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Christopher L. Castro in
Current site
Google Scholar
PubMed
Close
,
Hsin-I Chang Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Hsin-I Chang in
Current site
Google Scholar
PubMed
Close
,
Timothy Lahmers Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Timothy Lahmers in
Current site
Google Scholar
PubMed
Close
,
David K. Adams Centro de la Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico

Search for other papers by David K. Adams in
Current site
Google Scholar
PubMed
Close
, and
Carlos A. Ochoa-Moya Centro de la Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico

Search for other papers by Carlos A. Ochoa-Moya in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Long-term changes in North American monsoon (NAM) precipitation intensity in the southwestern United States are evaluated through the use of convective-permitting model simulations of objectively identified severe weather events during “historical past” (1950–70) and “present day” (1991–2010) periods. Severe weather events are the days on which the highest atmospheric instability and moisture occur within a long-term regional climate simulation. Simulations of severe weather event days are performed with convective-permitting (2.5 km) grid spacing, and these simulations are compared with available observed precipitation data to evaluate the model performance and to verify any statistically significant model-simulated trends in precipitation. Statistical evaluation of precipitation extremes is performed using a peaks-over-threshold approach with a generalized Pareto distribution. A statistically significant long-term increase in atmospheric moisture and instability is associated with an increase in extreme monsoon precipitation in observations and simulations of severe weather events, corresponding to similar behavior in station-based precipitation observations in the Southwest. Precipitation is becoming more intense within the context of the diurnal cycle of convection. The largest modeled increases in extreme-event precipitation occur in central and southwestern Arizona, where mesoscale convective systems account for a majority of monsoon precipitation and where relatively large modeled increases in precipitable water occur. Therefore, it is concluded that a more favorable thermodynamic environment in the southwestern United States is facilitating stronger organized monsoon convection during at least the last 20 years.

a Current affiliation: Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thang Luong, thang.luong@kaust.edu.sa

Abstract

Long-term changes in North American monsoon (NAM) precipitation intensity in the southwestern United States are evaluated through the use of convective-permitting model simulations of objectively identified severe weather events during “historical past” (1950–70) and “present day” (1991–2010) periods. Severe weather events are the days on which the highest atmospheric instability and moisture occur within a long-term regional climate simulation. Simulations of severe weather event days are performed with convective-permitting (2.5 km) grid spacing, and these simulations are compared with available observed precipitation data to evaluate the model performance and to verify any statistically significant model-simulated trends in precipitation. Statistical evaluation of precipitation extremes is performed using a peaks-over-threshold approach with a generalized Pareto distribution. A statistically significant long-term increase in atmospheric moisture and instability is associated with an increase in extreme monsoon precipitation in observations and simulations of severe weather events, corresponding to similar behavior in station-based precipitation observations in the Southwest. Precipitation is becoming more intense within the context of the diurnal cycle of convection. The largest modeled increases in extreme-event precipitation occur in central and southwestern Arizona, where mesoscale convective systems account for a majority of monsoon precipitation and where relatively large modeled increases in precipitable water occur. Therefore, it is concluded that a more favorable thermodynamic environment in the southwestern United States is facilitating stronger organized monsoon convection during at least the last 20 years.

a Current affiliation: Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thang Luong, thang.luong@kaust.edu.sa
Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, D. K., C. Minjarez, Y. Serra, A. Quintanar, L. Alatorre, A. Granados, E. Vázquez, and J. Braun, 2014: Mexican GPS tracks North American monsoon convection. Eos, Trans. Amer. Geophys. Union, 95, 6162, doi:10.1002/2014EO070001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., J. Wang, G. Salvucci, S. Gopal, and S. Islam, 2010: Observed trends in summertime precipitation over the southwestern United States. J. Climate, 23, 19371944, doi:10.1175/2009JCLI3317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, C. L., and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, doi:10.1029/2008GL033614.

  • Bukovsky, M. S., D. J. Gochis, and L. O. Mearns, 2013: Towards assessing NARCCAP regional climate model credibility for the North American monsoon: Current climate simulations. J. Climate, 26, 88028826, doi:10.1175/JCLI-D-12-00538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., C. M. Carrillo, D. J. Gochis, D. M. Hammerling, R. R. McCrary, and L. O. Mearns, 2015: Toward assessing NARCCAP regional climate model credibility for the North American Monsoon: Future climate simulations. J. Climate, 28, 67076728, doi:10.1175/JCLI-D-14-00695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, C. L., 2017: Assessing climate change impacts for DoD installations in the southwest United States during the warm season. Strategic Environmental Research and Development Program Final Rep. RC-2205, 113 pp. [Available online at https://www.serdp-estcp.org/Program-Areas/Resource-Conservation-and-Resiliency/Infrastructure-Resiliency/Vulnerability-and-Impact-Assessment/RC-2205.]

  • Castro, C. L., R. A. Pielke Sr., and J. O. Adegoke, 2007: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part I: Model climatology (1950–2002). J. Climate, 20, 38663887, doi:10.1175/JCLI4211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, C. L., H.-I. Chang, F. Dominguez, C. Carrillo, J. Kyung-Schemm, and H. H.-M. Juang, 2012: Can a regional climate model improve warm season forecasts in North America? J. Climate, 25, 82128237, doi:10.1175/JCLI-D-11-00441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, H.-I., C. L. Castro, C. M. Carrillo, and F. Dominguez, 2015: The more extreme nature of U.S. warm season climate in the recent observational record and two “well-performing” dynamically downscaled CMIP3 models. J. Geophys. Res. Atmos., 120, 82448263, doi:10.1002/2015JD023333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, J. P., R. E. Jewell, and H. E. Brooks, 2002: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecasting, 17, 885890, doi:10.1175/1520-0434(2002)017<0885:CBOCCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., E. Rivera, D. P. Lettenmaier, and C. L. Castro, 2012: Changes in winter precipitation extremes for the western United States under a warmer climate as simulated by regional climate models. Geophys. Res. Lett., 39, L05803, doi:10.1029/2011GL050762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., C. N. Williams Jr., X. Yin, and R. S. Vose, 2009: Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update. J. Geophys. Res., 114, D015 112, doi:10.1029/2008JD010989.

    • Search Google Scholar
    • Export Citation
  • Garfin, G., A. Jardine, R. Merideth, M. Black, and S. Leroy, Eds., 2013: Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Change Assessment. Island Press, 531 pp.

    • Crossref
    • Export Citation
  • Geil, K., Y. L. Serra, and X. Zeng, 2013: Assessment of CMIP5 model simulations of the North American monsoon system. J. Climate, 26, 87878801, doi:10.1175/JCLI-D-13-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350, doi:10.1175/JCLI3339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossman-Clarke, S., J. A. Zehnder, T. Loridan, and C. S. B. Grimmond, 2010: Contribution of land use changes to near surface air temperatures during recent summer extreme heat events in the Phoenix metropolitan area. J. Appl. Meteor. Climatol., 49, 16491664, doi:10.1175/2010JAMC2362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J. E. Janowiak, and Y.-P. Yao, 1996: A gridded hourly precipitation data base for the United States (1963–1993). NCEP/Climate Prediction Center Atlas 1, NOAA NWS, 47 pp. [Available online at http://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/1/cover.html.]

  • Hu, H., and F. Dominguez, 2015: Evaluation of oceanic and terrestrial sources of moisture for the North American monsoon using numerical models and precipitation stable isotopes. J. Hydrometeor., 16, 1935, doi:10.1175/JHM-D-14-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443, doi:10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1996: The surface layer in the NCEP Eta Model. 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.

  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and R. W. Knight, 1998: Secular trends in the precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231241, doi:10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and K. E. Trenberth, 2003: Modern climate change. Science, 302, 17191723, doi:10.1126/science.1090228.

  • Katz, R. W., M. B. Parlange, and P. Naveau, 2002: Statistics of extremes in hydrology. Adv. Water Resour., 25, 12871304, doi:10.1016/S0309-1708(02)00056-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E., and Coauthors, 2017: Do convection-permitting regional climate models improve projections of future precipitation change? Bull. Amer. Meteor. Soc., 98, 79 93, doi:10.1175/BAMS-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V., and F. Zwiers, 2005: Estimating extremes in transient climate change simulations. J. Climate, 18, 11561173, doi:10.1175/JCLI3320.1.

  • Kunkel, K. E., and Coauthors, 2013: Monitoring and understanding trends in extreme storms: State of knowledge. Bull. Amer. Meteor. Soc., 94, 499514, doi:10.1175/BAMS-D-11-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahmers, T. M., C. L. Castro, D. K. Adams, Y. L. Serra, J. J. Brost, and T. Luong, 2016: Long-term changes in the climatology of transient inverted troughs over the North American monsoon region and their effects on precipitation. J. Climate, 29, 60376064, doi:10.1175/JCLI-D-15-0726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., E. A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. M. Andreadis, E. P. Maurer, and D. P. Lettenmaier, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, doi:10.1175/JCLI-D-12-00508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., C. Deser, and T. Reichler, 2009: Cause of the widening of the tropical belt since 1958. Geophys. Res. Lett., 36, L03803, doi:10.1029/2009GL038880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., D. M. McCollum, and K. W. Howard, 1995: Large-scale patterns associated with severe summertime thunderstorms over central Arizona. Wea. Forecasting, 10, 763778, doi:10.1175/1520-0434(1995)010<0763:LSPAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazon, J. J., C. L. Castro, D. K. Adams, H. Chang, C. M. Carrillo, and J. J. Brost, 2016: Objective climatological analysis of extreme weather events in Arizona during the North American monsoon. J. Appl. Meteor. Climatol., 55, 24312450, doi:10.1175/JAMC-D-16-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., F. Zwiers, J. Evans, T. Knutson, L. Mearns, and P. Whetton, 2000: Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bull. Amer. Meteor. Soc., 81, 427436, doi:10.1175/1520-0477(2000)081<0427:TIEWAC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, P. Friederichs, and A. Hense, 2009: Signal detectability in extreme precipitation changes assessed from twentieth century climate simulations. Climate Dyn., 32, 95111, doi:10.1007/s00382-008-0376-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, doi:10.1038/nature09763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minjarez-Sosa, C. M., C. L. Castro, K. L. Cummins, J. Waissmann, and D. K. Adams, 2017: An improved QPE over complex terrain employing cloud-to-ground lightning occurrences. J. Appl. Meteor. Climatol., 56, 24892507, doi:10.1175/JAMC-D-16-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petrie, M., S. Collins, D. Gutzler, and D. Moore, 2014: Regional trends and local variability in monsoon precipitation in the northern Chihuahuan Desert, USA. J. Arid Environ., 103, 6370, doi:10.1016/j.jaridenv.2014.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, doi:10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raman, A., A. F. Arellano, and J. J. Brost, 2014: Revisiting haboobs in the southwestern United States: An observational case study of the 5 July 2011 Phoenix dust storm. Atmos. Environ., 89, 179188, doi:10.1016/j.atmosenv.2014.02.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivera, E., F. Dominguez, and C. L. Castro, 2014: Atmospheric rivers and extreme cool season precipitation events in the Verde River basin of Arizona. J. Hydrometeor., 15, 813829, doi:10.1175/JHM-D-12-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2007: Identification of human-induced changes in atmospheric moisture content. Proc. Natl. Acad. Sci. USA, 104, 15 24815 253, doi:10.1073/pnas.0702872104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and R. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, doi:10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K., A. Dai, R. Rasmussen, and D. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and F. Dominguez, 2013: Effects of spatial resolution in the simulation of daily and subdaily precipitation in the southwestern US. J. Geophys. Res. Atmos., 118, 75917605, doi:10.1002/jgrd.50590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Truong, N. M., T. T. Tien, R. A. Pielke Sr., C. L. Castro, and G. Leoncini, 2009: A modified Kain–Fritsch scheme and its application for simulation of an extreme precipitation event in Vietnam. Mon. Wea. Rev., 137, 766789, doi:10.1175/2008MWR2434.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willett, K. M., N. P. Gillett, P. D. Jones, and P. W. Thorne, 2007: Attribution of observed surface humidity changes to human influence. Nature, 449, 710712, doi:10.1038/nature06207.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2498 530 39
PDF Downloads 1534 276 22