Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

Larry K. Berg Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Larry K. Berg in
Current site
Google Scholar
PubMed
Close
,
Rob K. Newsom Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Rob K. Newsom in
Current site
Google Scholar
PubMed
Close
, and
David D. Turner Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by David D. Turner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

One year of coherent Doppler lidar data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement site in Oklahoma was analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was normalized by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations in which the layer was changing rapidly. In this study, the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary layer top. The normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, degree of instability, and wind shear across the boundary layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was also found to be a function of the season, shear stress, and wind shear across the boundary layer top. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary layer top. The normalized altitude of the peak values of kurtosis was found to be higher when there was a large amount of wind shear at the boundary layer top.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Larry K. Berg, larry.berg@pnnl.gov

Abstract

One year of coherent Doppler lidar data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement site in Oklahoma was analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was normalized by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations in which the layer was changing rapidly. In this study, the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary layer top. The normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, degree of instability, and wind shear across the boundary layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was also found to be a function of the season, shear stress, and wind shear across the boundary layer top. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary layer top. The normalized altitude of the peak values of kurtosis was found to be higher when there was a large amount of wind shear at the boundary layer top.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Larry K. Berg, larry.berg@pnnl.gov
Save
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252, doi:10.1023/A:1019992330866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, L. K., and R. B. Stull, 2005: A simple parameterization coupling the convective daytime boundary layer and fair-weather cumuli. J. Atmos. Sci., 62, 19761988, doi:10.1175/JAS3437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, L. K., and E. I. Kassianov, 2008: Temporal variability of fair-weather cumulus statistics at the ACRF SGP site. J. Climate, 21, 33443358, doi:10.1175/2007JCLI2266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, L. K., E. I. Kassianov, C. N. Long, and D. L. Mills Jr., 2011: Surface summertime radiative forcing by shallow cumuli at the Atmospheric Radiation Measurement Southern Great Plains site. J. Geophys. Res., 116, D01202, doi:10.1029/2010JD014593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, L. K., W. I. Gustafson, E. I. Kassianov, and L. Deng, 2013: Evaluation of a modified scheme for shallow convection: Implementation of CuP and case studies. Mon. Wea. Rev., 141, 134147, doi:10.1175/MWR-D-12-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beyrich, F., 1997: Mixing height estimation from sodar data—A critical discussion. Atmos. Environ., 31, 39413953, doi:10.1016/S1352-2310(97)00231-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bianco, L., and J. M. Wilczak, 2002: Convective boundary layer depth: Improved measurement by Doppler radar wind profiler using fuzzy logic methods. J. Atmos. Oceanic Technol., 19, 17451758, doi:10.1175/1520-0426(2002)019<1745:CBLDIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148167, doi:10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, doi:10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, I. M., 2003: Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J. Atmos. Oceanic Technol., 20, 10921105, doi:10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113, doi:10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39, 645665, doi:10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., and E. Fedorovich, 2006: Dynamics of sheared convective boundary layer entrainment. Part II: Evaluation of bulk model predictions of entrainment flux. J. Atmos. Sci., 63, 11791199, doi:10.1175/JAS3696.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, D. R., 1997: Eddy correlation flux measurement system (30ECOR). Atmospheric Radiation Measurement Climate Research Facility Data Archive, accessed 2 February 2016, doi:10.5439/1025039.

    • Crossref
    • Export Citation
  • Cook, D. R., 2016: Eddy correlation flux measurement system instrument handbook. ARM Tech. Rep. DOE/SC-ARM/TR-052, 18 pp. [Available online at https://www.arm.gov/publications/tech_reports/handbooks/ecor_handbook.pdf.]

  • Coulter, R., 2012: Radar wind profiler and RASS handbook. ARM Tech. Rep. DOE/SC-ARM-TR-044, 23 pp. [Available online at https://www.arm.gov/publications/tech_reports/handbooks/rwp_handbook.pdf.]

  • Darbieu, and Coauthors, 2015: Turbulence vertical structure of the boundary layer during the afternoon transition. Atmos. Chem. Phys., 15, 10 07110 086, doi:10.5194/acp-15-10071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, J., C. Collier, F. Davies, R. Burton, G. Pearson, and P. Di Girolamo, 2013: Vertical velocity observed by Doppler lidar during COPS-A case study with convective rain event. Meteor. Z., 22, 463470, doi:10.1127/0941-2948/2013/0411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1974: Three-dimensional numerical study of turbulence in an entraining mixed layer. Bound.-Layer Meteor., 7, 199226, doi:10.1007/BF00227913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., and G. E. Willis, 1985: Further results from a laboratory model of the convective planetary boundary layer. Bound.-Layer Meteor., 32, 205236, doi:10.1007/BF00121880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, X., P. Minnis, and B. Xi, 2005: A climatology of midlatitude continental clouds from the ARM SGP Central Facility: Part I: Low-level cloud macrophysical, microphysical, and radiative properties. J. Climate, 18, 13911410, doi:10.1175/JCLI3342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, M., B. A. Albrecht, V. P. Ghate, and P. Kollias, 2014: Turbulence in continental stratocumulus, part I: External forcings and turbulence structures. Bound.-Layer Meteor., 150, 341360, doi:10.1007/s10546-013-9873-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghate, V. P., B. A. Albrecht, M. A. Miller, A. Brewer, and C. W. Fairall, 2014: Turbulence and radiation in stratocumulus-topped marine boundary layers: A case study from VOCALS-REx. J. Appl. Meteor. Climatol., 53, 117135, doi:10.1175/JAMC-D-12-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenhut, G. K., and S. J. S. Khalsa, 1987: Convective elements in the marine atmospheric boundary layer. Part I: Conditional sampling statistics. J. Climate Appl. Meteor., 26, 813822, doi:10.1175/1520-0450(1987)026<0813:CEITMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heffter, J. L., 1980: Air Resources Laboratories atmospheric transport and dispersion model. ARL Tech. Memo. ERL ARL-81, 24 pp. [Available online at https://www.arl.noaa.gov/documents/reports/arl-81.pdf.]

  • Hogan, R. J., A. L. M. Grant, A. J. Illingworth, G. N. Pearson, and E. J. O’Connor, 2009: Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar. Quart. J. Roy. Meteor. Soc., 135, 635643, doi:10.1002/qj.413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holdridge, D., and J. Kyrouac, 1993: Surface meteorological instrumentation (MET). Atmospheric Radiation Measurement Climate Research Facility Data Archive, accessed 2 February 2016, doi:10.5439/1025220.

    • Crossref
    • Export Citation
  • Holzworth, G. C., 1964: Estimates of mean maximum mixing depths in the contiguous United States. Mon. Wea. Rev., 92, 235242, doi:10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holzworth, G. C., 1967: Mixing depths, wind speeds and air pollution potential for selected locations in the United States. J. Appl. Meteor., 6, 10391044, doi:10.1175/1520-0450(1967)006<1039:MDWSAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwai, H., S. Ishii, R. Oda, K. Mizutani, S. Sekizawa, and Y. Murayama, 2013: Performance and technique of coherent 2-μm differential absorption and wind lidar for wind measurement. J. Atmos. Oceanic Technol., 30, 429449, doi:10.1175/JTECH-D-12-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, V. E., D. P. Schanen, M. H. Wang, M. Ovchinnikov, and S. Ghan, 2012: PDF parameterization of boundary layer clouds in models with horizontal grid spacings from 2 to 16 km. Mon. Wea. Rev., 140, 285306, doi:10.1175/MWR-D-10-05059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1990: Some observations of vertical velocity skewness in the convective planetary boundary layer. J. Atmos. Sci., 47, 11631169, doi:10.1175/1520-0469(1990)047<1163:SOOVVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and P. L. Stephens, 1980: The role of thermals in the convective boundary layer. Bound.-Layer Meteor., 19, 509532, doi:10.1007/BF00122351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and J. Sun, 2007: The spectral composition of fluxes and variances over land and sea out to the mesoscale. Bound.-Layer Meteor., 125, 6384, doi:10.1007/s10546-007-9191-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., J. C. Wyngaard, and W. T. Pennell, 1980: Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci., 37, 13131326, doi:10.1175/1520-0469(1980)037<1313:MFASMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., V. Wulfmeyer, and C. Senff, 2000: Measuring second- through fourth-order moments in noisy data. J. Atmos. Oceanic Technol., 17, 13301347, doi:10.1175/1520-0426(2000)017<1330:MSTFOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., M. Lothon, S. Mayor, P. Sullivan, and G. Canut, 2012: A comparison of higher-order vertical velocity moments in the convective boundary layer from lidar with in situ measurements and large-eddy simulation. Bound.-Layer Meteor., 143, 107123, doi:10.1007/s10546-011-9615-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., F. Hu, and X.-L. Cheng, 2011: Probability density functions of turbulent velocity and temperature fluctuations in the unstable atmospheric surface layer. J. Geophys. Res., 116, D12117, doi:10.1029/2010JD015503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., and X.-Z. Liang, 2010: Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23, 57905809, doi:10.1175/2010JCLI3552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. K., and Coauthors, 2017: Assessing state-of-the-art capabilities for probing the atmospheric boundary layer: The XPIA field campaign. Bull. Amer. Meteor. Soc., 98, 289314, doi:10.1175/BAMS-D-15-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S., F. Beyrich, and J. Bange, 2014: Observing entrainment processes using a small unmanned aerial vehicle: A feasibility study. Bound.-Layer Meteor., 150, 449467, doi:10.1007/s10546-013-9880-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2012: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, doi:10.1175/BAMS-D-11-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, V., N. Kalthoff, A. Wieser, M. Kohler, M. Mauder, and L. Gantner, 2016: Observed spatiotemporal variability of boundary-layer turbulence over flat, heterogeneous terrain. Atmos. Chem. Phys., 16, 13771400, doi:10.5194/acp-16-1377-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, doi:10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muradyan, P., T. Martin, and R. Coulter, 1998: Radar wind profiler (915RWPWINDCON). Atmospheric Radiation Measurement Climate Research Facility, accessed 7 March 2016, doi:10.5439/1025135.

    • Crossref
    • Export Citation
  • Newsom, R. K., 2012: Doppler lidar handbook. ARM Tech. Rep. DOE/SC-ARM-TR-101, 16 pp. [Available online at https://www.arm.gov/publications/tech_reports/handbooks/dl_handbook.pdf.]

  • Newsom, R. K., C. Sivaraman, T. R. Shippert, and L. D. Riihimaki, 2015: Doppler lidar vertical velocity statistics value-added product. ARM Tech. Rep. DOE/SC-ARM/TR-149, 12 pp. [Available online at https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-149.pdf.]

    • Crossref
    • Export Citation
  • Newsom, R. K., W. A. Brewer, J. M. Wilczak, D. E. Wolfe, S. P. Oncley, and J. K. Lundquist, 2017: Validating precision estimates in horizontal wind measurements from a Doppler lidar. Atmos. Meas. Tech., 10, 12291240, doi:10.5194/amt-10-1229-2017; Corrigendum, doi:10.5194/amt-10-1229-2017-corrigendum.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, G., F. Davies, and C. Collier, 2009: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer. J. Atmos. Oceanic Technol., 26, 240250, doi:10.1175/2008JTECHA1128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Röhner, L., and K. Träumner, 2013: Aspects of convective boundary layer turbulence measured by a dual-Doppler lidar system. J. Atmos. Oceanic Technol., 30, 21322142, doi:10.1175/JTECH-D-12-00193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scarino, A. J., and Coauthors, 2014: Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during CalNex and CARES. Atmos. Chem. Phys., 14, 55475560, doi:10.5194/acp-14-5547-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 10011027, doi:10.1016/S1352-2310(99)00349-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sisterson, D. L., R. A. Peppler, T. S. Cress, P. J. Lamb, and D. D. Turner, 2016: The ARM Southern Great Plains (SGP) site. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., 6.1–6.14, doi:10.1175/AMSMONOGRAPHS-D-16-0004.1.

    • Crossref
    • Export Citation
  • Smedman, A.-S., and U. Högström, 1983: Turbulent characteristics of a shallow convective internal boundary layer. Bound.-Layer Meteor., 25, 271287, doi:10.1007/BF00119540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1991: Evaluation of local similarity functions in the convective boundary layer. J. Appl. Meteor., 30, 15651583, doi:10.1175/1520-0450(1991)030<1565:EOLSFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2005: Statistics of scalar fields in the atmospheric boundary layer based on large-eddy simulations. Part 1: Free convection. Bound.-Layer Meteor., 116, 467486, doi:10.1007/s10546-005-0907-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, doi:10.1007/BF00122760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, S. C., C. J. Senff, A. M. Weickmann, W. A. Brewer, R. M. Banta, S. P. Sandberg, D. C. Law, and R. M. Hardesty, 2009: Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J. Atmos. Oceanic Technol., 26, 673688, doi:10.1175/2008JTECHA1157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., V. Wulfmeyer, L. K. Berg, and J. H. Schween, 2014: Water vapor turbulence profiles in stationary continental convective mixed layers. J. Geophys. Res. Atmos., 119, 11 15111 165, doi:10.1002/2014JD022202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogelmann, and Coauthors, 2012: RACORO extended-term aircraft observations of boundary layer clouds. Bull. Amer. Meteor. Soc., 93, 861878, doi:10.1175/BAMS-D-11-00189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., C. J. Senff, and R. M. Banta, 1999: A comparison of mixing depths observed by ground-based wind profilers and an airborne lidar. J. Atmos. Oceanic Technol., 16, 584590, doi:10.1175/1520-0426(1999)016<0584:ACOMDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. G., and J. M. Hacker, 1992: The composite shape and structure of coherent eddies in the convective boundary layer. Bound.-Layer Meteor., 61, 213245, doi:10.1007/BF02042933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, C. R., and Coauthors, 2010: Turbulent flow at 190 m height above London during 2006–2008: A climatology and the applicability of similarity theory. Bound.-Layer Meteor., 137, 7796, doi:10.1007/s10546-010-9516-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., S. K. Muppa, A. Behrendt, E. Hammann, F. Späth, Z. Sorbjan, D. D. Turner, and R. M. Hardesty, 2016: Determination of convective boundary layer entrainment fluxes, dissipation rates, and the molecular destruction of variances: Theoretical description and a strategy for its confirmation with a novel lidar system synergy. J. Atmos. Sci., 73, 667692, doi:10.1175/JAS-D-14-0392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., O. R. Coté, and Y. Izumi, 1971: Local free convection, similarity, and the budgets of shear stress and heat flux. J. Atmos. Sci., 28, 11711182, doi:10.1175/1520-0469(1971)028<1171:LFCSAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. A. Klein, 2010: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site. J. Atmos. Sci., 67, 29432959, doi:10.1175/2010JAS3366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 922 280 45
PDF Downloads 863 233 30