Recent Changes in U.S. Regional Heat Wave Characteristics in Observations and Reanalyses

J. T. Schoof Department of Geography and Environmental Resources, Southern Illinois University, Carbondale, Illinois

Search for other papers by J. T. Schoof in
Current site
Google Scholar
PubMed
Close
,
T. W. Ford Department of Geography and Environmental Resources, Southern Illinois University, Carbondale, Illinois

Search for other papers by T. W. Ford in
Current site
Google Scholar
PubMed
Close
, and
S. C. Pryor Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by S. C. Pryor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Humidity is a key determinant of heat wave impacts, but studies investigating changes in extreme heat events have not differentiated between events characterized by high temperatures and those characterized by simultaneously elevated temperature and humidity. The authors present a framework, using air temperature (T) and equivalent temperature (TE; a measure combining temperature and specific humidity), to examine changes in local percentile-based extreme heat events characterized by high temperature (T only) and those with high temperature and humidity (T-and-TE events). Application to one observational dataset (PRISM), four reanalysis products (1981–2015), and seven U.S. regions reveals widespread changes in heat wave characteristics over the 35-yr period. Agreement among the datasets employed on several heat wave metrics suggests that many of the findings are robust. With the exception of the northern plains region, all regions experienced increases in both T-only and T-and-TE heat wave day (HWD) frequency in each of the reanalyses. In the northern plains, all datasets have negative trends in T-only HWD frequency and positive trends in T-and-TE HWD frequency. Trends in HWD frequency were generally accompanied by changes in the spatial footprint in heat wave conditions. Temperature has increased significantly during T-only HWDs in the western regions, while increases in TE during T-and-TE HWDs have occurred in the central United States and Northeast region. These findings suggest that equivalent temperature provides an alternative perspective on the evolution of regional heat wave climatology. Studies considering changes in regional heat wave impacts should carefully consider the role of atmospheric moisture.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. T. Schoof, jschoof@siu.edu

Abstract

Humidity is a key determinant of heat wave impacts, but studies investigating changes in extreme heat events have not differentiated between events characterized by high temperatures and those characterized by simultaneously elevated temperature and humidity. The authors present a framework, using air temperature (T) and equivalent temperature (TE; a measure combining temperature and specific humidity), to examine changes in local percentile-based extreme heat events characterized by high temperature (T only) and those with high temperature and humidity (T-and-TE events). Application to one observational dataset (PRISM), four reanalysis products (1981–2015), and seven U.S. regions reveals widespread changes in heat wave characteristics over the 35-yr period. Agreement among the datasets employed on several heat wave metrics suggests that many of the findings are robust. With the exception of the northern plains region, all regions experienced increases in both T-only and T-and-TE heat wave day (HWD) frequency in each of the reanalyses. In the northern plains, all datasets have negative trends in T-only HWD frequency and positive trends in T-and-TE HWD frequency. Trends in HWD frequency were generally accompanied by changes in the spatial footprint in heat wave conditions. Temperature has increased significantly during T-only HWDs in the western regions, while increases in TE during T-and-TE HWDs have occurred in the central United States and Northeast region. These findings suggest that equivalent temperature provides an alternative perspective on the evolution of regional heat wave climatology. Studies considering changes in regional heat wave impacts should carefully consider the role of atmospheric moisture.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. T. Schoof, jschoof@siu.edu
Save
  • Anderson, G. B., and M. L. Bell, 2011: Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Perspect., 119, 210218, doi:10.1289/ehp.1002313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., 2013: Regional climate and variability of NASA MERRA and recent reanalyses: U.S. summertime precipitation and temperature. J. Appl. Meteor. Climatol., 52, 19391951, doi:10.1175/JAMC-D-12-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Memo. NASA/TM-2015-104606/Vol. 43, 145 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

  • Brown, P. J., and A. T. DeGaetano, 2013: Trends in U.S. surface humidity, 1930–2010. J. Appl. Meteor. Climatol., 52, 147163, doi:10.1175/JAMC-D-12-035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments, and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Dai, A., 2006: Recent climatology, variability, and trends in global surface humidity. J. Climate, 19, 35893606, doi:10.1175/JCLI3816.1.

  • Daly, C., 2006: Guidelines for assessing the suitability of spatial climate data sets. Int. J. Climatol., 26, 707721, doi:10.1002/joc.1322.

  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, doi:10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davey, C. A., R. A. Pielke Sr., and K. P. Gallo, 2006: Differences between near-surface equivalent temperature and temperature trends for the eastern United States: Equivalent temperature as an alternative measure of heat content. Global Planet. Change, 54, 1932, doi:10.1016/j.gloplacha.2005.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, L. W., and P. J. Gertler, 2015: Contribution of air conditioning adoption to future energy use under global warming. Proc. Natl. Acad. Sci. USA, 112, 59625967, doi:10.1073/pnas.1423558112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fall, S., N. S. Diffenbaugh, D. Niyogi, R. A. Pielke Sr., and G. Rochon, 2010: Temperature and equivalent temperature over the United States (1979–2005). Int. J. Climatol., 30, 20452054, doi:10.1002/joc.2094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and J. T. Schoof, 2016: Oppressive heat events in Illinois related to antecedent wet soils. J. Hydrometeor., 17, 27132726, doi:10.1175/JHM-D-16-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and J. T. Schoof, 2017: Characterizing extreme and oppressive heat waves in Illinois. J. Geophys. Res. Atmos., 122, 682298, doi:10.1002/2016JD025721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., and R. J. Ross, 1998: Increased summertime heat stress in the U.S. Nature, 396, 529530, doi:10.1038/25030.

  • Gaffen, D. J., and R. J. Ross, 1999: Climatology and trends in U.S. surface humidity and temperature. J. Climate, 12, 811828, doi:10.1175/1520-0442(1999)012<0811:CATOUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and Coauthors, 2016: North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Climate Dyn., 46, 11511184, doi:10.1007/s00382-015-2638-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grundstein, A., and J. Dowd, 2011: Trends in extreme apparent temperatures over the United States, 1949–2010. J. Appl. Meteor. Climatol., 50, 16501653, doi:10.1175/JAMC-D-11-063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust response of the hydrologic cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

  • Hoerling, M., and Coauthors, 2013: Anatomy of an extreme event. J. Climate, 26, 28112832, doi:10.1175/JCLI-D-12-00270.1.

  • Hondula, D. M., R. C. Balling Jr., J. K. Vanos, and M. Georgescu, 2015: Rising temperatures, human health, and the role of adaptation. Curr. Climate Change Rep., 1, 144154, doi:10.1007/s40641-015-0016-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnstone, J. A., and N. J. Mantua, 2014: Atmospheric controls on northeast Pacific temperature variability and change, 1900–2012. Proc. Natl. Acad. Sci. USA, 111, 14 36014 365, doi:10.1073/pnas.1318371111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kravchenko, J., A. P. Abernethy, M. Fawzy, and H. K. Lyerly, 2013: Minimization of heatwave morbidity and mortality. Amer. J. Prev. Med., 44, 274282, doi:10.1016/j.amepre.2012.11.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., S. A. Changnon, B. C. Reinke, and R. W. Arritt, 1996: The July 1995 heat wave in the Midwest: A climatic perspective and critical weather factors. Bull. Amer. Meteor. Soc., 77, 15071518, doi:10.1175/1520-0477(1996)077<1507:TJHWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., 1996: Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. Int. J. Climatol., 16, 11971226, doi:10.1002/(SICI)1097-0088(199611)16:11<1197::AID-JOC89>3.0.CO;2-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., M. J. Roberts, W. Schlenker, N. Braun, B. B. Little, R. M. Rejesus, and G. L. Hammer, 2014: Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science, 344, 516519, doi:10.1126/science.1251423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacDonald, G. M., 2010: Water, climate change, and sustainability in the Southwest. Proc. Natl. Acad. Sci. USA, 107, 21 25621 262, doi:10.1073/pnas.0909651107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and C. T. Y. Chung, 2015: Disappearance of the southeast U.S. “warming hole” with the late 1990s transition of the Interdecadal Pacific Oscillation. Geophys. Res. Lett., 42, 55645570, doi:10.1002/2015GL064586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melillo, J. M., T. C. Richmond, and G. W. Yohe, Eds., 2014: Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program, 841 pp., doi:10.7930/J0Z31WJ2.

    • Crossref
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

  • Metzger, K. B., K. Ito, and T. D. Matte, 2010: Summer heat and mortality in New York City: How hot is too hot? Environ. Health Perspect., 118, 8086, doi:10.1289/ehp.0900906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, N. L., K. Hayhoe, J. Jin, and M. Auffhammer, 2008: Climate, extreme heat, and electricity demand in California. J. Appl. Meteor. Climatol., 47, 18341844, doi:10.1175/2007JAMC1480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., and K. A. Cherkauer, 2010: Retrospective droughts in the crop growing season: implications to corn and soybean yield in the Midwestern United States. Agric. For. Meteor., 150, 10301045, doi:10.1016/j.agrformet.2010.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 2016: 76-year list of severe weather fatalities. NOAA, 2 pp., http://www.nws.noaa.gov/om/hazstats/resources/weather_fatalities.pdf.

  • Pan, Z., R. W. Arritt, E. S. Takle, W. J. Gutowski, C. J. Anderson, and M. Segal, 2004: Altered hydrologic feedback in a warming climate introduces a “warming hole.” Geophys. Res. Lett., 31, L17109, doi:10.1029/2004GL020528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., C. Davey, and J. Morgan, 2004: Assessing “global warming” with surface heat content. Eos, Trans. Amer. Geophys. Union, 85, 210211, doi:10.1029/2004EO210004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and J. T. Schoof, 2016: Evaluation of near-surface temperature, humidity and equivalent temperature from regional climate models in type-II downscaling. J. Geophys. Res. Atmos., 121, 33263338, doi:10.1002/2015JD024539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. C. Sullivan, and T. Wright, 2016: Quantifying the roles of changing albedo, emissivity, and energy partitioning in the impact of irrigation on atmospheric heat content. J. Appl. Meteor. Climatol., 55, 16991706, doi:10.1175/JAMC-D-15-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoof, J. T., Z. A. Heern, M. D. Therrell, and J. W. F. Remo, 2015: Assessing trends in lower tropospheric heat content in the central United States using equivalent temperature. Int. J. Climatol., 35, 28282836, doi:10.1002/joc.4175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, doi:10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, doi:10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., M. G. Donat, B. Mueller, and L. V. Alexander, 2014: No pause in the increase of hot temperature extremes. Nat. Climate Change, 4, 161163, doi:10.1038/nclimate2145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souch, C., and C. S. B. Grimmond, 2004: Applied climatology: ‘Heat waves.’ Prog. Phys. Geogr., 28, 599606, doi:10.1191/0309133304pp428pr.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1984: A universal scale of apparent temperature. J. Climate Appl. Meteor., 23, 16741687, doi:10.1175/1520-0450(1984)023<1674:AUSOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and G. W. Branstator, 1992: Issues in establishing causes of the 1998 drought over North America. J. Climate, 5, 159172, doi:10.1175/1520-0442(1992)005<0159:IIECOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vose, R. S., S. Applequist, M. J. Menne, C. N. Williams Jr., and P. Thorne, 2012: An intercomparison of temperature trends in the U.S. Historical Climatology Network and recent atmospheric reanalyses. Geophys. Res. Lett., 39, L10703, doi:10.1029/2012GL051387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, S., and Coauthors, 2014: Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor. Sci. Rep., 4, 6929, doi:10.1038/srep06929.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1832 1373 236
PDF Downloads 688 276 16