Low-Level Jets over Utö, Finland, Based on Doppler Lidar Observations

Minttu Tuononen Finnish Meteorological Institute, Helsinki, Vaisala Oyj, Vantaa, and Department of Physics, University of Helsinki, Helsinki, Finland

Search for other papers by Minttu Tuononen in
Current site
Google Scholar
PubMed
Close
,
Ewan J. O’Connor Finnish Meteorological Institute, Helsinki, Finland, and Meteorology Department, University of Reading, Reading, United Kingdom

Search for other papers by Ewan J. O’Connor in
Current site
Google Scholar
PubMed
Close
,
Victoria A. Sinclair Department of Physics, University of Helsinki, Helsinki, Finland

Search for other papers by Victoria A. Sinclair in
Current site
Google Scholar
PubMed
Close
, and
Ville Vakkari Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Ville Vakkari in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Over two years of meteorological observations from Utö, a small island in the Finnish outer archipelago in the Baltic Sea, were used to investigate the occurrence and characteristics of low-level jets (LLJs) and the diurnal and seasonal variations in these properties. An objective LLJ identification algorithm that is suitable for high-temporal-and-vertical-resolution Doppler lidar data was created and applied to wind profiles obtained from a combination of Doppler lidar data and two-dimensional sonic anemometer observations. This algorithm was designed to identify coherent LLJ structures and requires that they persist for at least 1 h. The long-term mean LLJ frequency of occurrence at Utö was 12%, the mean LLJ wind speed was 11.6 m s−1, and the vast majority of identified LLJs occurred below 150 m above ground level. The LLJ frequency of occurrence was much higher during summer (21%) and spring (18%) than in autumn (8%) and winter (3%). During winter and spring, the LLJ frequency of occurrence is evenly distributed throughout the day. In contrast, the LLJ frequency of occurrence peaks at night (1900–0100 UTC) during summer and during the evening hours (1700–1900 UTC) in autumn. The highest and strongest LLJs come from the southwest, which is also the predominant LLJ direction in all seasons. LLJs below 100 m are common in spring and summer, are weaker, and do not show a strong directional dependence.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Minttu Tuononen, minttu.tuononen@fmi.fi

Abstract

Over two years of meteorological observations from Utö, a small island in the Finnish outer archipelago in the Baltic Sea, were used to investigate the occurrence and characteristics of low-level jets (LLJs) and the diurnal and seasonal variations in these properties. An objective LLJ identification algorithm that is suitable for high-temporal-and-vertical-resolution Doppler lidar data was created and applied to wind profiles obtained from a combination of Doppler lidar data and two-dimensional sonic anemometer observations. This algorithm was designed to identify coherent LLJ structures and requires that they persist for at least 1 h. The long-term mean LLJ frequency of occurrence at Utö was 12%, the mean LLJ wind speed was 11.6 m s−1, and the vast majority of identified LLJs occurred below 150 m above ground level. The LLJ frequency of occurrence was much higher during summer (21%) and spring (18%) than in autumn (8%) and winter (3%). During winter and spring, the LLJ frequency of occurrence is evenly distributed throughout the day. In contrast, the LLJ frequency of occurrence peaks at night (1900–0100 UTC) during summer and during the evening hours (1700–1900 UTC) in autumn. The highest and strongest LLJs come from the southwest, which is also the predominant LLJ direction in all seasons. LLJs below 100 m are common in spring and summer, are weaker, and do not show a strong directional dependence.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Minttu Tuononen, minttu.tuononen@fmi.fi
Save
  • Andreas, E. L, K. J. Claffy, and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Bound.-Layer Meteor., 97, 459486, doi:10.1023/A:1002793831076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baas, P., F. C. Bosveld, H. K. Baltink, and A. A. M. Holtslag, 2009: A climatology of nocturnal low-level jets at Cabauw. J. Appl. Meteor. Climatol., 48, 16271642, doi:10.1175/2009JAMC1965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baas, P., B. J. H. van de Wiel, L. van den Brink, and A. Holtslag, 2012: Composite hodographs and inertial oscillations in the nocturnal boundary layer. Quart. J. Roy. Meteor. Soc., 138, 528535, doi:10.1002/qj.941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252, doi:10.1023/A:1019992330866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 27002719, doi:10.1175/JAS3776.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, N. D. Kelley, R. M. Hardesty, and W. A. Brewer, 2013: Wind energy meteorology: Insight into wind properties in the turbine-rotor layer of the atmosphere from high-resolution Doppler lidar. Bull. Amer. Meteor. Soc., 94, 883902, doi:10.1175/BAMS-D-11-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, doi:10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörenkämper, M., M. Optis, A. Monahan, and G. Steinfeld, 2015: On the offshore advection of boundary-layer structures and the influence on offshore wind conditions. Bound.-Layer Meteor., 155, 459482, doi:10.1007/s10546-015-0008-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Floors, R., C. L. Vincent, S. E. Gryning, A. Peña, and E. Batchvarova, 2013: The wind profile in the coastal boundary layer: Wind lidar measurements and numerical modelling. Bound.-Layer Meteor., 147, 469491, doi:10.1007/s10546-012-9791-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., P. Gatt, D. Rees, and R. M. Huffaker, 2005: Wind lidar. Laser Remote Sensing, T. Fujii and T. Fukuchi, Eds., CRC Press, 469–722.

    • Crossref
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, doi:10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsikko, A., and Coauthors, 2014: Observing wind, aerosol particles, cloud and precipitation: Finland’s new ground-based remote-sensing network. Atmos. Meas. Tech., 7, 13511375, doi:10.5194/amt-7-1351-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., A. L. M. Grant, A. J. Illingworth, G. N. Pearson, and E. J. O’Connor, 2009: Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar. Quart. J. Roy. Meteor. Soc., 135, 635643, doi:10.1002/qj.413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., and A.-S. Smedman-Högström, 1984: The wind regime in coastal areas with special reference to results obtained from the Swedish wind energy program. Bound.-Layer Meteor., 30, 351373, doi:10.1007/BF00121961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., P. M. Klein, M. Xue, F. Zhang, D. C. Doughty, R. Forkel, E. Joseph, and J. D. Fuentes, 2013: Impact of the vertical mixing induced by low-level jets on boundary layer ozone concentration. Atmos. Environ., 70, 123130, doi:10.1016/j.atmosenv.2012.12.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kallistratova, M. A., and R. D. Kouznetsov, 2012: Low-level jets in the Moscow region in summer and winter observed with a sodar network. Bound.-Layer Meteor., 143, 159175, doi:10.1007/s10546-011-9639-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karipot, A., M. Y. Leclerc, and G. Zhang, 2009: Characteristics of nocturnal low-level jets observed in the north Florida area. Mon. Wea. Rev., 137, 26052621, doi:10.1175/2009MWR2705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, N. D., B. J. Jonkman, and G. N. Scott, 2006: The Great Plains turbulence environment: Its origins, impact and simulation. National Renewable Energy Laboratory Conf. Paper NREL/CP-500-40176, 21 pp, https://www.nrel.gov/docs/fy07osti/40176.pdf.

  • Koscielny, A. J., R. J. Doviak, and D. S. Zrnic, 1984: An evaluation of the accuracy of some radar wind profiling techniques. J. Atmos. Oceanic Technol., 1, 309320, doi:10.1175/1520-0426(1984)001<0309:AEOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotroni, V., and K. Lagouvardos, 1993: Low-level jet streams associated with atmospheric cold fronts: Seven case studies from the Fronts 87 Experiment. Geophys. Res. Lett., 20, 13711374, doi:10.1029/93GL01701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, S. E., J. F. Barlow, and C. R. Wood, 2013: An assessment of a three-beam Doppler lidar wind profiling method for use in urban areas. J. Wind Eng. Ind. Aerodyn., 119, 5359, doi:10.1016/j.jweia.2013.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manninen, A. J., E. J. O’Connor, V. Vakkari, and T. Petäjä, 2016: A generalised background correction algorithm for a Halo Doppler lidar and its application to data from Finland. Atmos. Meas. Tech., 9, 817827, doi:10.5194/amt-9-817-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, H., and R. Talbot, 2004: Role of meteorological processes in two New England ozone episodes during summer 2001. J. Geophys. Res., 109, D20305, doi:10.1029/2004JD004850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., 1995: The Australian nocturnal jet and diurnal variations of boundary-layer winds over Mt. Isa in north-eastern Australia. Quart. J. Roy. Meteor. Soc., 121, 9871003, doi:10.1002/qj.49712152503.

    • Search Google Scholar
    • Export Citation
  • Mitchell, M. J., R. W. Arritt, and K. Labas, 1995: A climatology of the warm season Great Plains low-level jet using wind profiler observations. Wea. Forecasting, 10, 576591, doi:10.1175/1520-0434(1995)010<0576:ACOTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, E. J., A. J. Illingworth, I. M. Brooks, C. D. Westbrook, R. J. Hogan, F. Davies, and B. J. Brooks, 2010: A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in-situ measurements. J. Atmos. Oceanic Technol., 27, 16521664, doi:10.1175/2010JTECHA1455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orr, A., J. Hunt, R. Capon, J. Sommeria, D. Cresswell, and A. Owinoh, 2005: Coriolis effects on wind jets and cloudiness along coasts. Weather, 60, 291299, doi:10.1256/wea.219.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owinoh, A. Z., J. C. R. Hunt, A. Orr, P. Clark, R. Klein, H. J. S. Fernando, and F. T. N. Nieuwstadt, 2005: Effects of changing surface heat fluxes on the atmospheric boundary layer flow over flat terrain. Bound.-Layer Meteor., 116, 331361, doi:10.1007/s10546-004-2819-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 1982: Barrier winds along the Sierra Nevada Mountains. J. Appl. Meteor., 21, 925930, doi:10.1175/1520-0450(1982)021<0925:BWATSN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2000: Forcing of the summertime low-level jet along the California coast. J. Appl. Meteor., 39, 24212433, doi:10.1175/1520-0450(2000)039<2421:FOTSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Päschke, E., R. Leinweber, and V. Lehmann, 2015: An assessment of the performance of a 1.5 μm Doppler lidar for operational vertical wind profiling based on a 1-year trial. Atmos. Meas. Tech., 8, 22512266, doi:10.5194/amt-8-2251-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña, A., and Coauthors, 2016: Ten years of boundary-layer and wind-power meteorology at Høvsøre, Denmark. Bound.-Layer Meteor., 158, 126, doi:10.1007/s10546-015-0079-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., R. M. Banta, W. A. Brewer, S. P. Sandberg, and R. M. Hardesty, 2012: Doppler lidar–based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications. J. Appl. Meteor. Climatol., 51, 327349, doi:10.1175/JAMC-D-11-040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pirinen, P., H. Simola, J. Aalto, J.-P. Kaukoranta, P. Karllson, and R. Ruuhela, 2012: Climatological statistics of Finland 1981–2010. Finnish Meteorological Institute Rep. 2012:1, 92 pp.

  • Ranjha, R., G. Svensson, M. Tjernström, and A. Semedo, 2013: Global distribution and seasonal variability of coastal low-level jets derived from ERA-Interim reanalysis. Tellus, 65A, doi:10.3402/tellusa.v65i0.20412.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., and P. S. Anderson, 2006: Profiles of katabatic flow in summer and winter over Coats Land, Antarctica. Quart. J. Roy. Meteor. Soc., 132, 779802, doi:10.1256/qj.05.148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rife, D. L., J. O. Pinto, A. J. Monaghan, C. A. Davis, and J. R. Hannan, 2010: Global distribution and characteristics of diurnally varying low-level jets. J. Climate, 23, 50415064, doi:10.1175/2010JCLI3514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rye, B. J., and R. M. Hardesty, 1993: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer–Rao lower bound. IEEE Trans. Geosci. Remote Sens., 31, 1627, doi:10.1109/36.210440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savijärvi, H. I., 2011: Anti-heat island circulations and low-level jets on a sea gulf. Tellus, 63A, 10071013, doi:10.1111/j.1600-0870.2011.00531.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., M. Tjernström, and U. Högström, 1993: Analysis of the turbulence structure of a marine low-level jet. Bound.-Layer Meteor., 66, 105126, doi:10.1007/BF00705462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., H. Bergström, and U. Högström, 1995: Spectra, variances and length scales in a marine stable boundary layer dominated by a low level jet. Bound.-Layer Meteor., 76, 211232, doi:10.1007/BF00709352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, J., K. Liao, R. L. Coulter, and B. M. Lesht, 2005: Climatology of the low-level jet at the southern Great Plains Atmospheric Boundary Layer Experiments site. J. Appl. Meteor., 44, 15931606, doi:10.1175/JAM2294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, doi:10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storm, B., and S. Basu, 2010: The WRF Model forecast-derived low-level wind shear climatology over the United States Great Plains. Energies, 3, 258276, doi:10.3390/en3020258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco, 2009: Evaluation of the Weather Research and Forecasting Model on forecasting low-level jets: Implications for wind energy. Wind Energy, 12, 8190, doi:10.1002/we.288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., M. Felton, L. Lei, M. P. McCormick, R. Delgado, and A. St. Pé, 2016: Lidar remote sensing of cloud formation caused by low-level jets. J. Geophys. Res. Atmos., 121, 59045911, doi:10.1002/2015JD024590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svensson, N., H. Bergström, E. Sahlée, and A. Rutgersson, 2016: Stable atmospheric conditions over the Baltic Sea: Model evaluation and climatology. Boreal Environ. Res., 21, 387404.

    • Search Google Scholar
    • Export Citation
  • Tucker, S. C., C. J. Senff, A. M. Weickmann, W. A. Brewer, R. M. Banta, S. P. Sandberg, D. C. Law, and R. M. Hardesty, 2009: Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J. Atmos. Oceanic Technol., 26, 673688, doi:10.1175/2008JTECHA1157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, S. C., and Coauthors, 2010: Relationships of coastal nocturnal boundary layer winds and turbulence to Houston ozone concentrations during TexAQS 2006. J. Geophys. Res., 115, D10304, doi:10.1029/2009JD013169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuononen, M., V. A. Sinclair, and T. Vihma, 2015: A climatology of low-level jets in the mid-latitudes and polar regions of the Northern Hemisphere. Atmos. Sci. Lett., 16, 492499, doi:10.1002/asl.587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USGS, 2010: Global multi-resolution terrain elevation data. U.S. Geological Survey, accessed 4 March 2015, http://earthexplorer.usgs.gov/.

  • Vanderwende, B. J., J. K. Lundquist, M. E. Rhodes, E. S. Takle, and S. L. Irvin, 2015: Observing and simulating the summertime low-level jet in central Iowa. Mon. Wea. Rev., 143, 23192336, doi:10.1175/MWR-D-14-00325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the Southern Great Plains. J. Appl. Meteor., 36, 13631376, doi:10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 786 303 23
PDF Downloads 587 142 11