Projections of Twenty-First-Century Climate Extremes for Alaska via Dynamical Downscaling and Quantile Mapping

Rick Lader Department of Atmospheric Sciences, Geophysical Institute, and International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Rick Lader in
Current site
Google Scholar
PubMed
Close
,
John E. Walsh International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by John E. Walsh in
Current site
Google Scholar
PubMed
Close
,
Uma S. Bhatt Department of Atmospheric Sciences, Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Uma S. Bhatt in
Current site
Google Scholar
PubMed
Close
, and
Peter A. Bieniek International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Peter A. Bieniek in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate change is expected to alter the frequencies and intensities of at least some types of extreme events. Although Alaska is already experiencing an amplified response to climate change, studies of extreme event occurrences have lagged those for other regions. Forced migration due to coastal erosion, failing infrastructure on thawing permafrost, more severe wildfire seasons, altered ocean chemistry, and an ever-shrinking season for snow and ice are among the most devastating effects, many of which are related to extreme climate events. This study uses regional dynamical downscaling with the Weather Research and Forecasting (WRF) Model to investigate projected twenty-first-century changes of daily maximum temperature, minimum temperature, and precipitation over Alaska. The forcing data used for the downscaling simulations include the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim; 1981–2010), Geophysical Fluid Dynamics Laboratory Climate Model, version 3 (GFDL CM3), historical (1976–2005), and GFDL CM3 representative concentration pathway 8.5 (RCP8.5; 2006–2100). Observed trends of temperature and sea ice coverage in the Arctic are large, and the present trajectory of global emissions makes a continuation of these trends plausible. The future scenario is bias adjusted using a quantile-mapping procedure. Results indicate an asymmetric warming of climate extremes; namely, cold extremes rise fastest, and the greatest changes occur in winter. Maximum 1- and 5-day precipitation amounts are projected to increase by 53% and 50%, which is larger than the corresponding increases for the contiguous United States. When compared with the historical period, the shifts in temperature and precipitation indicate unprecedented heat and rainfall across Alaska during this century.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rick Lader, rtladerjr@alaska.edu

Abstract

Climate change is expected to alter the frequencies and intensities of at least some types of extreme events. Although Alaska is already experiencing an amplified response to climate change, studies of extreme event occurrences have lagged those for other regions. Forced migration due to coastal erosion, failing infrastructure on thawing permafrost, more severe wildfire seasons, altered ocean chemistry, and an ever-shrinking season for snow and ice are among the most devastating effects, many of which are related to extreme climate events. This study uses regional dynamical downscaling with the Weather Research and Forecasting (WRF) Model to investigate projected twenty-first-century changes of daily maximum temperature, minimum temperature, and precipitation over Alaska. The forcing data used for the downscaling simulations include the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim; 1981–2010), Geophysical Fluid Dynamics Laboratory Climate Model, version 3 (GFDL CM3), historical (1976–2005), and GFDL CM3 representative concentration pathway 8.5 (RCP8.5; 2006–2100). Observed trends of temperature and sea ice coverage in the Arctic are large, and the present trajectory of global emissions makes a continuation of these trends plausible. The future scenario is bias adjusted using a quantile-mapping procedure. Results indicate an asymmetric warming of climate extremes; namely, cold extremes rise fastest, and the greatest changes occur in winter. Maximum 1- and 5-day precipitation amounts are projected to increase by 53% and 50%, which is larger than the corresponding increases for the contiguous United States. When compared with the historical period, the shifts in temperature and precipitation indicate unprecedented heat and rainfall across Alaska during this century.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rick Lader, rtladerjr@alaska.edu
Save
  • Bekryaev, R. V., I. V. Polyakov, and V. A. Alexeev, 2010: Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Climate, 23, 38883906, doi:10.1175/2010JCLI3297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, K. E., and J. E. Walsh, 2015: Spatial and temporal changes in indices of extreme precipitation and temperature for Alaska. Int. J. Climatol., 35, 14341452, doi:10.1002/joc.4067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieniek, P. A., J. E. Walsh, R. L. Thoman, and U. S. Bhatt, 2014: Using climate divisions to analyze variations and trends in Alaska temperature and precipitation. J. Climate, 27, 28002818, doi:10.1175/JCLI-D-13-00342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieniek, P. A., U. S. Bhatt, J. E. Walsh, T. S. Rupp, J. Zhang, J. R. Krieger, and R. Lader, 2016: Dynamical downscaling of ERA-Interim temperature and precipitation for Alaska. J. Appl. Meteor. Climatol., 55, 635654, doi:10.1175/JAMC-D-15-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., S. R. Sobie, and T. Q. Murdock, 2015: Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Climate, 28, 69386959, doi:10.1175/JCLI-D-14-00754.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapin, F. S., III, S. F. Trainor, P. Cochran, H. Huntington, C. Markon, M. McCammon, A. D. McGuire, and M. Serreze, 2014: Alaska. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 514–536, doi:10.7930/J00Z7150.

    • Crossref
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and G. R. Asnar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183.

    • Search Google Scholar
    • Export Citation
  • Glisan, J. M., and W. J. Gutowski Jr., 2014a: WRF summer extreme daily precipitation over the CORDEX Arctic. J. Geophys. Res. Atmos., 119, 17201732, doi:10.1002/2013JD020697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glisan, J. M., and W. J. Gutowski Jr., 2014b: WRF winter extreme daily precipitation over the North American CORDEX Arctic. J. Geophys. Res. Atmos., 119, 10 73810 748, doi:10.1002/2014JD021676

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350, doi:10.1175/JCLI3339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayhoe, K. A., 2010: A standardized framework for evaluating the skill of regional climate downscaling techniques. Ph.D. dissertation, University of Illinois at Urbana–Champaign, 158 pp. [Available online at http://www.snap.uaf.edu/attachments/1_Hayhoe_Katharine.pdf.]

  • Hill, D. F., N. Bruhis, S. E. Calos, A. Arendt, and J. Beamer, 2015: Spatial and temporal variability of freshwater discharge into the Gulf of Alaska. J. Geophys. Res. Oceans, 120, 634646, doi:10.1002/2014JC010395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. C. B. Field et al., Eds., Cambridge University Press, 582 pp.

  • Janjić, Z., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., F. W. Zwiers, and X. Zhang, 2009: Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. WMO Tech. Doc. WMO-TD 1500, 56 pp. [Available online at http://www.wmo.int/datastat/documents/WCDMP_72_TD_1500_en_1_1.pdf.]

  • Koenigk, T., P. Berg, and R. Döscher, 2015: Arctic climate change in an ensemble of regional CORDEX simulations. Polar Res., 34, 24 603, doi:10.3402/polar.v34.24603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopec, B. G., X. Feng, F. A. Michel, and E. S. Posmentier, 2016: Influence of sea ice on Arctic precipitation. Proc. Natl. Acad. Sci. USA, 113, 4651, doi:10.1073/pnas.1504633113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lader, R., U. S. Bhatt, J. E. Walsh, T. S. Rupp, and P. A. Bieniek, 2016: Two-meter temperature and precipitation from atmospheric reanalysis evaluated for Alaska. J. Appl. Meteor. Climatol., 55, 901922, doi:10.1175/JAMC-D-15-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laliberté, F., S. E. L. Howell, and P. J. Kushner, 2016: Regional variability of a projected sea ice-free Arctic during the summer months. Geophys. Res. Lett., 43, 256263, doi:10.1002/2015GL066855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Tebaldi, and D. Adams-Smith, 2016: US daily temperature records past, present, and future. Proc. Natl. Acad. Sci. USA, 113, 13 97713 982, doi:10.1073/pnas.1606117113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H. C., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEI, 2017: Climate at a glance: U.S. time series. NESDIS, accessed 13 April 2017. [Available online at http://www.ncdc.noaa.gov/cag/.]

  • O’Gorman, P. A., and C. J. Muller, 2010: How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations? Environ. Res. Lett., 5, 025207, doi:10.1088/1748-9326/5/2/025207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., M. Wang, J. E. Walsh, and J. C. Stroeve, 2014: Future Arctic climate changes: Adaptation and mitigation time scales. Earth’s Future, 2, 6874, doi:10.1002/2013EF000162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., E. Hanna, I. Hanssen-Bauer, S.-J. Kim, J. E. Walsh, M. Wang, U. S. Bhatt, and R. L. Thoman, 2016a: Surface air temperature. NOAA. [Available online at http://www.arctic.noaa.gov/Report-Card/Report-Card-2016/ArtMID/5022/ArticleID/271/Surface-Air-Temperature.]

  • Overland, J. E., E. Hanna, I. Hanssen-Bauer, S.-J. Kim, J. E. Walsh, M. Wang, U. S. Bhatt, and R. L. Thoman, 2016b: Air temperature [in “State of the Climate in 2015”]. Bull. Amer. Meteor. Soc., 97 (8), S132S134.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2014: Global sea ice coverage from satellite data: Annual cycle and 35-yr trends. J. Climate, 27, 93779382, doi:10.1175/JCLI-D-14-00605.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Partain, J. L., Jr., and Coauthors, 2016: An assessment of the role of anthropogenic climate change in the Alaska fire season of 2015 [in “Explaining Extremes of 2015 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 97 (12), S14S18, doi:10.1175/BAMS-D-16-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, G. P., and Coauthors, 2013: The challenge to keep global warming below 2°C. Nat. Climate Change, 3, 46, doi:10.1038/nclimate1783.

  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, doi:10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2016: The future intensification of hourly precipitation extremes. Nat. Climate Change, 6, 4852, doi:10.1038/nclimate3168.

    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2011: RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 3357, doi:10.1007/s10584-011-0149-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013a: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 17161733, doi:10.1002/jgrd.50203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013b: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, doi:10.1002/jgrd.50188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.1056/D68S4MVH.

    • Crossref
    • Export Citation
  • U.S. Environmental Protection Agency, 2016. Climate change indicators in the United States 2016. U.S. Environmental Protection Agency Rep. EPA 430-R-16-004, 96 pp. [Available online at http://www.epa.gov/climate-indicators.]

  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., and Coauthors, 2014: Our changing climate. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 19–67, doi:10.7930/J0KW5CXT.

    • Crossref
    • Export Citation
  • Walsh, J. E., P. Bieniek, B. Brettschneider, E. Euskirchen, R. Lader, and R. Thoman, 2017: The exceptionally warm winter of 2015/16 in Alaska. J. Climate, 30, 20692088, doi:10.1175/JCLI-D-16-0473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., U. S. Bhatt, W. V. Tangborn, and C. S. Lingle, 2007: Climate downscaling for estimating glacier mass balances in northwestern North America: Validation with a USGS benchmark glacier. Geophys. Res. Lett., 34, L21505, doi:10.1029/2007GL031139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and J. Zhang, 2001: Heat and freshwater budgets and pathways in the Arctic Mediterranean in a coupled ocean/sea-ice model. J. Oceanogr., 57, 207237, doi:10.1023/A:1011147309004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. Klein Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, doi:10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1458 448 27
PDF Downloads 1069 280 29