Microclimate Variation among Urban Land Covers: The Importance of Vertical and Horizontal Structure in Air and Land Surface Temperature Relationships

Steven M. Crum Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California

Search for other papers by Steven M. Crum in
Current site
Google Scholar
PubMed
Close
and
G. Darrel Jenerette Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California

Search for other papers by G. Darrel Jenerette in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Air and land surface warming effects from urbanization are of increasing concern because of expanding heat-related impacts on human health. Many studies have investigated land-cover effects on air temperature Ta or land surface temperature (LST) individually, but relatively few studies have examined the relationships between these two heat indicators and other meteorological variables. The authors investigate how land cover influences local distributions of LST, Ta, and relative humidity (RH) and their interactions. During July 2016, 30 Ta and RH sensors were deployed at two heights above the ground (0.1 and 1.5 m) along with a thermal camera and an anemometer to quantify the influence of surface dynamics on atmospheric micrometeorological conditions. Sensors were distributed in Riverside, California, over five common urban land covers: asphalt, bare surface, turf grass, short trees, and tall trees. Stronger Ta–LST relationships were observed at 0.1 m for asphalt, bare surface, and grass and at 1.5 m for short and tall trees. Excluding grass, greater Ta–LST differences were found for daytime than for nighttime. To add to the complexity of Ta–LST relationships, increasing spatial variation in LST during the day for short- and tall-tree land covers were found. Furthermore, both wind velocity and LST were correlated with Ta vertical distributions. Higher RH and lower LST, Ta, and vapor pressure deficit were found in vegetated covers. Through the use of thermal imagery and meteorological measures, it was found that distinct land-cover influences on microclimate exist and that estimates of urban Ta using LST may improve with the use of land-cover-specific relationships.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-17-0054.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Steven Crum, scrum001@ucr.edu

Abstract

Air and land surface warming effects from urbanization are of increasing concern because of expanding heat-related impacts on human health. Many studies have investigated land-cover effects on air temperature Ta or land surface temperature (LST) individually, but relatively few studies have examined the relationships between these two heat indicators and other meteorological variables. The authors investigate how land cover influences local distributions of LST, Ta, and relative humidity (RH) and their interactions. During July 2016, 30 Ta and RH sensors were deployed at two heights above the ground (0.1 and 1.5 m) along with a thermal camera and an anemometer to quantify the influence of surface dynamics on atmospheric micrometeorological conditions. Sensors were distributed in Riverside, California, over five common urban land covers: asphalt, bare surface, turf grass, short trees, and tall trees. Stronger Ta–LST relationships were observed at 0.1 m for asphalt, bare surface, and grass and at 1.5 m for short and tall trees. Excluding grass, greater Ta–LST differences were found for daytime than for nighttime. To add to the complexity of Ta–LST relationships, increasing spatial variation in LST during the day for short- and tall-tree land covers were found. Furthermore, both wind velocity and LST were correlated with Ta vertical distributions. Higher RH and lower LST, Ta, and vapor pressure deficit were found in vegetated covers. Through the use of thermal imagery and meteorological measures, it was found that distinct land-cover influences on microclimate exist and that estimates of urban Ta using LST may improve with the use of land-cover-specific relationships.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-17-0054.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Steven Crum, scrum001@ucr.edu

Supplementary Materials

    • Supplemental Materials (PDF 410.16 KB)
Save
  • Armson, D., P. Stringer, and A. R. Ennos, 2012: The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For. Urban Greening, 11, 245255, doi:10.1016/j.ufug.2012.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armson, D., M. A. Rahman, and A. R. Ennos, 2013: A comparison of the shading effectiveness of five different street tree species in Manchester, UK. Arboric. Urban For., 39, 157164. [Available online at http://joa.isa-arbor.com/request.asp?JournalID=1&ArticleID=3278&Type=2.]

    • Search Google Scholar
    • Export Citation
  • Aubrecht, D. M., B. R. Helliker, M. L. Goulden, D. A. Roberts, C. J. Still, and A. D. Richardson, 2016: Continuous, long-term, high-frequency thermal imaging of vegetation: Uncertainties and recommended best practices. Agric. For. Meteor., 228–229, 315326, doi:10.1016/j.agrformet.2016.07.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barreca, A. I., and J. P. Schimshack, 2012: Absolute humidity, temperature, and influenza mortality: 30 years of country-level evidence from the United States. Amer. J. Epidemiol., 176 (Suppl.), 114122, doi:10.1093/aje/kws259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buyantuyev, A., and J. G. Wu, 2010: Urban heat island and landscape heterogeneity: Linking spatiotemporal variations in surface temperature to land-cover and socioeconomic patterns. Landscape Ecol., 25, 1733, doi:10.1007/s10980-009-9402-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chakraborty, S. D., Y. Kant, and D. Mitra, 2015: Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data. J. Environ. Manage., 148, 143152, doi:10.1016/j.jenvman.2013.11.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., 2015: Determining the leaf emissivity of three crops by infrared thermometry. Sensors, 15, 11 38711 401, doi:10.3390/s150511387.

  • Chen, L., Z. Zhang, and B. E. Ewers, 2012: Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions. PLoS One, 7, e47882, doi:10.1371/journal.pone.0047882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coseo, P., and L. Larsen, 2014: How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain urban heat islands in Chicago. Landscape Urban Plann., 125, 117129, doi:10.1016/j.landurbplan.2014.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, S. M., L. L. Liang, and G. D. Jenerette, 2016: Landscape position influences soil respirations variability and sensitivity to physiological drivers in mixer-use lands of Southern California, USA. J. Geophys. Res. Biogeosci., 121, 25302543, doi:10.1002/2016JG003469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, S. M., S. A. Schiflett, and G. D. Jenerette, 2017: The influence of vegetation, mesoclimate and meteorology on urban atmospheric microclimates across a coastal to desert climate gradient. J. Environ. Manage., 200, 295303, doi:10.1016/j.jenvman.2017.05.077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, A. Y., J. Jung, B. C. Pijanowski, and E. S. Minor, 2016: Combined vegetation volume and “greenness” affect urban air temperature. Appl. Geogr., 71, 106114, doi:10.1016/j.apgeog.2016.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doran, J. C., J. M. Hubbe, J. C. Liljegren, W. J. Shaw, G. J. Collatz, D. R. Cook, and R. L. Hart, 1998: A technique for determining the spatial and temporal distributions of surface heat fluxes of heat and moisture over the Southern Great Plains Cloud and Radiation Testbed. J. Geophys. Res., 103, 61096121, doi:10.1029/97JD03427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feyisa, G. L., K. Dons, and H. Meilby, 2014: Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landscape Urban Plann., 123, 8795, doi:10.1016/j.landurbplan.2013.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, K. P., A. L. McNab, T. R. Karl, J. F. Brown, J. J. Hood, and J. D. Tarpley, 1993: The use of a vegetation index for assessment of the urban heat island effect. Int. J. Remote Sens., 14, 22232230, doi:10.1080/01431169308954031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, C. X., Y. G. Qian, N. Wang, L. L. Ma, and X. G. Jiang, 2015: Land surface emissivity retrieval from airborne hyperspectral scanner thermal infrared data over urban surfaces. International Conference on Intelligent Earth Observing and Applications 2015, G. Zhou and C. Kang, Eds., International Society for Optics and Photonics (SPIE Proceedings, Vol. 9808), 980823, doi:10.1117/12.2220606.

    • Crossref
    • Export Citation
  • Gao, J., Y. Sun, Y. Lu, and L. Li, 2014: Impact of ambient humidity on child health: A systematic review. PLoS One, 9, e112508, doi:10.1371/journal.pone.0112508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgescu, M., P. E. Morefield, B. G. Bierwagen, and C. P. Weaver, 2014: Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci. USA, 111, 29092914, doi:10.1073/pnas.1322280111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillner, S., J. Vogt, S. Dettman, and A. Roloff, 2015: Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landscape Urban Plann., 143, 3342, doi:10.1016/j.landurbplan.2015.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, S., and T. R. Oke, 1995: Comparison of heat fluxes from summertime observations in the suburbs of four North American cities. J. Appl. Meteor., 34, 873889, doi:10.1175/1520-0450(1995)034<0873:COHFFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, S. J., and Coauthors, 2016: Convergence of microclimate in residential landscapes across diverse cities in the United States. Landscape Ecol., 31, 101117, doi:10.1007/s10980-015-0297-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harlan, S. L., A. J. Brazel, L. Prashad, W. L. Stefanov, and L. Larsen, 2006: Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med., 63, 28472863, doi:10.1016/j.socscimed.2006.07.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harlan, S. L., J. H. Declet-Barreto, W. L. Stefanov, and D. B. Petitti, 2013: Neighborhood effects on heat deaths: Social and environmental predictors of vulnerability in Maricopa County, Arizona. Environ. Health Perspect., 121, 197204, doi:10.1289/ehp.1104625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartz, D. A., L. Prashad, B. C. Hedquist, J. Golden, and A. J. Brazel, 2006: Linking satellite images and hand-held infrared thermography to observed neighborhood climate conditions. Remote Sens. Environ., 104, 190200, doi:10.1016/j.rse.2005.12.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imhoff, M. L., P. Zhang, R. E. Wolfe, and L. Bounoua, 2010: Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ., 114, 504513, doi:10.1016/j.rse.2009.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenerette, G. D., S. L. Harlan, W. L. Stefanov, and C. A. Martin, 2011: Ecosystem services and urban heat riskscape moderation: Water, green spaces, and social inequality in Phoenix, USA. Ecol. Appl., 21, 26372651, doi:10.1890/10-1493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenerette, G. D., and Coauthors, 2016: Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landscape Ecol., 31, 745760, doi:10.1007/s10980-015-0284-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawashima, S., T. Ishida, M. Minomura, and T. Miwa, 2000: Relations between surface temperature and air temperature on a local scale during winter nights. J. Appl. Meteor., 39, 15701579, doi:10.1175/1520-0450(2000)039<1570:RBSTAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klok, L., S. Zwart, H. Verhagen, and E. Mauri, 2012: The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resour. Conserv. Recycl., 64, 2329, doi:10.1016/j.resconrec.2012.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsberg, H. E., 1981: The Urban Climate. Academic Press, 275 pp.

  • Lee, H., J. Holst, and H. Mayer, 2013: Modification of human-biometeorologically significant radiant flux densities by shading as local method to mitigate heat stress in summer within urban street canyons. Adv. Meteor., 2013, 312572, doi:10.1155/2013/312572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, B. S., and Y. J. Lin, 2010: Cooling effect of shade trees with different characteristics in a subtropical urban park. HortScience, 45, 8386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Litvak, E., N. Bijoor, and D. E. Pataki, 2013: Adding trees to irrigated turfgrass lawns may be a water-saving measure in semi-arid environments. Ecohydrology, 7, 13141330, doi:10.1002/eco.1458.

    • Search Google Scholar
    • Export Citation
  • Lo, C. P., and D. A. Quattrochi, 2003: Land-use and land-cover change, urban heat island phenomenon, and health implications: A remote sensing approach. Photogramm. Eng. Remote Sens., 69, 10531063, doi:10.14358/PERS.69.9.1053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myint, S. W., E. A. Wentz, A. J. Brazel, and D. A. Quattrochi, 2013: The impact of distinct anthropogenic and vegetation features on urban warming. Landscape Ecol., 28, 959978, doi:10.1007/s10980-013-9868-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 124, doi:10.1002/qj.49710845502.

  • Oke, T. R., 1987: Boundary Layer Climate. 2nd ed. Routledge, 435 pp.

  • Oswald, E. M., R. B. Rood, K. Zhang, C. J. Gronlund, M. S. O’Neill, J. L. White-Newsome, S. J. Brines, and D. G. Brown, 2012: An investigation into the spatial variability of near-surface air temperatures in the Detroit, Michigan, metropolitan region. J. Appl. Meteor. Climatol., 51, 12901304, doi:10.1175/JAMC-D-11-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyler, J. W., S. Z. Dobrowski, Z. A. Holden, and S. W. Running, 2016: Remotely sensed land skin temperature as a spatial predictor of air temperature across conterminous United States. J. Appl. Meteor. Climatol., 55, 14411457, doi:10.1175/JAMC-D-15-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parris, K. M., and D. L. Hazell, 2005: Biotic effects of climate change in urban environments: The case of the grey-headed flying fox (Pteropus poliocephalus) in Melbourne, Australia. Biol. Conserv., 124, 267276, doi:10.1016/j.biocon.2005.01.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potchter, O., P. Cohen, and A. Bitan, 2006: Climatic behavior of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel. Int. J. Climatol., 26, 16951711, doi:10.1002/joc.1330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, M., T. R. Oke, and W. J. Emery, 1989: Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens., 10, 16991720, doi:10.1080/01431168908904002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santamouris, M., 2015: Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Sci. Total Environ., 512–513, 582598, doi:10.1016/j.scitotenv.2015.01.060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, N., U. Schlink, U. Franck, and K. Großmann, 2012: Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecol. Indic., 18, 693704, doi:10.1016/j.ecolind.2012.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shashua-Bar, I., and M. E. Hoffman, 2000: Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy Build., 31, 221235, doi:10.1016/S0378-7788(99)00018-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiflett, S. A., L. L. Liang, S. M. Crum, G. L. Feyisa, J. Wang, and G. D. Jenerette, 2017: Variation in the urban vegetation, surface temperature, air temperature nexus. Sci. Total Environ., 579, 495505, doi:10.1016/j.scitotenv.2016.11.069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souch, C. A., and C. Souch, 1993: The effect of trees on summertime below canopy urban climates: A case study Bloomington, Indiana. J. Arboric., 19, 303312.

    • Search Google Scholar
    • Export Citation
  • Stabler, L. B., C. A. Martin, and A. J. Brazel, 2005: Microclimates in a desert city were related to land use and vegetation index. Urban For. Urban Green., 3, 137147, doi:10.1016/j.ufug.2004.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stathopoulou, M., and C. Cartalis, 2007: Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Sol. Energy, 81, 358368, doi:10.1016/j.solener.2006.06.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1979: The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. J. Appl. Meteor., 18, 861873, doi:10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, B., and J. M. Norman, 2006: Land use planning and surface heat island formation: A parcel-based radiation flux approach. Atmos. Environ., 40, 35613573, doi:10.1016/j.atmosenv.2006.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Streiling, S., and A. Matzarakis, 2003: Influence of single and small clusters of trees on the bioclimate of a city: A case study. J. Arboric., 29, 309316.

    • Search Google Scholar
    • Export Citation
  • Taha, H., 1997: Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build., 25, 99103, doi:10.1016/S0378-7788(96)00999-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taleghani, M., D. Sailor, and G. A. Ban-Weiss, 2016: Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood. Environ. Res. Lett., 11, 024003, doi:10.1088/1748-9326/11/2/024003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tayyebi, A., and G. D. Jenerette, 2016: Increases in the climate change adaptation effectiveness and availability of vegetation across a coastal to desert climate gradient in metropolitan Los Angeles, CA, USA. Sci. Total Environ., 548–549, 6071, doi:10.1016/j.scitotenv.2016.01.049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tonolla, D., V. Acuña, U. Uehlinger, T. Frank, and K. Tockner, 2010: Thermal heterogeneity in river floodplains. Ecosystems, 13, 727740, doi:10.1007/s10021-010-9350-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unger, J., T. Gal, J. Rakonczai, L. Mucsi, J. Szatmári, Z. Tobak, B. van Leeuwen, and K. Fiala, 2009: Air temperature versus surface temperature in urban environment. Seventh Int. Conf. on Urban Climate, Yokohama, Japan, International Association for Urban Climate, A17-6. [Available online at http://www.ide.titech.ac.jp/~icuc7/extended_abstracts/pdf/375624-1-090514014110-003.pdf.]

  • Vahmani, P., and G. A. Ban-Weiss, 2016: Climatic consequences of adopting drought-tolerant vegetation over Los Angeles as a response to California drought. Geophys. Res. Lett., 43, 82408249, doi:10.1002/2016GL069658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanos, J. K., 2015: Children’s health and vulnerability in outdoor microclimates: A comprehensive review. Environ. Int., 76, 115, doi:10.1016/j.envint.2014.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanos, J. K., A. Middle, G. R. Mckercher, E. R. Kuras, and B. L. Ruddell, 2016: Hot playgrounds and children’s health: A multiscale analysis of surface temperatures in Arizona, USA. Landscape Urban Plann., 146, 2942, doi:10.1016/j.landurbplan.2015.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voogt, J. A., and T. R. Oke, 2003: Thermal remote sensing of urban climates. Remote Sens. Environ., 86, 370384, doi:10.1016/S0034-4257(03)00079-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2008. Guide to meteorological instruments and methods of observation. 7th ed. WMO Rep. 8, 681 pp. [Available online at http://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.html.]

  • Yang, F., S. S. Y. Lau, and F. Qian, 2011: Urban design to lower summertime outdoor temperatures: An empirical study on high-rise housing in Shanghai. Build. Environ., 46, 769785, doi:10.1016/j.buildenv.2010.10.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., X. Lee, R. B. Smith, and K. Oleson, 2014: Strong contributions of local background climate to urban heat islands. Nature, 511, 216219, doi:10.1038/nature13462.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 955 399 47
PDF Downloads 601 140 14