Using Lomb–Scargle Analysis to Derive Empirical Orthogonal Functions from Gappy Meteorological Data

Christopher Dupuis Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Christopher Dupuis in
Current site
Google Scholar
PubMed
Close
and
Courtney Schumacher Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Courtney Schumacher in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Lomb–Scargle discrete Fourier transform (LSDFT) is a well-known technique for analyzing time series. In this study, a solution for empirical orthogonal functions (EOFs) based on irregularly sampled data is derived from the LSDFT. It is demonstrated that this particular algorithm has no hard limit on its accuracy and yields results comparable to those of complex Hilbert EOF analysis. Two LSDFT algorithms are compared in terms of their performance in evaluating EOFs for precipitation observations from the Tropical Rainfall Measuring Mission satellite. Both are shown to be able to capture the pattern of the diurnal cycle of rainfall over the complex topography and diverse land cover of South America, and both also show other consistent features in the 0–12-day frequency band.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-17-0250.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher Dupuis, christopher.dupuis@noaa.gov

Abstract

The Lomb–Scargle discrete Fourier transform (LSDFT) is a well-known technique for analyzing time series. In this study, a solution for empirical orthogonal functions (EOFs) based on irregularly sampled data is derived from the LSDFT. It is demonstrated that this particular algorithm has no hard limit on its accuracy and yields results comparable to those of complex Hilbert EOF analysis. Two LSDFT algorithms are compared in terms of their performance in evaluating EOFs for precipitation observations from the Tropical Rainfall Measuring Mission satellite. Both are shown to be able to capture the pattern of the diurnal cycle of rainfall over the complex topography and diverse land cover of South America, and both also show other consistent features in the 0–12-day frequency band.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-17-0250.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher Dupuis, christopher.dupuis@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 146 KB)
Save
  • Betts, A. K., and C. Jakob, 2002: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res., 107, 8045, https://doi.org/10.1029/2001JD000427.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., S. E. Yuter, C. D. Burleyson, and A. H. Sobel, 2012: Very high resolution rainfall patterns measured by TRMM Precipitation Radar: Seasonal and diurnal cycles. Climate Dyn., 39, 239258, https://doi.org/10.1007/s00382-011-1146-6.

    • Search Google Scholar
    • Export Citation
  • Burleyson, C. D., Z. Feng, S. M. Hagos, J. Fast, L. A. Machado, and S. T. Martin, 2016: Spatial variability of the background diurnal cycle of deep convection around the GoAmazon2014/5 field campaign sites. J. Appl. Meteor. Climatol., 55, 15791598, https://doi.org/10.1175/JAMC-D-15-0229.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., 2012: Representing the sensitivity of convective cloud systems to tropospheric humidity in general circulation models. Surv. Geophys., 33, 637656, https://doi.org/10.1007/s10712-011-9148-9.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, https://doi.org/10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Climate Dyn., 39, 399418, https://doi.org/10.1007/s00382-011-1127-9.

    • Search Google Scholar
    • Export Citation
  • Dutt, A., and V. Rokhlin, 1993: Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput., 14, 13681393, https://doi.org/10.1137/0914081.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R., and J. M. Wallace, 1997: The diurnal march of convective cloudiness over the Americas. Mon. Wea. Rev., 125, 31573171, https://doi.org/10.1175/1520-0493(1997)125<3157:TDMOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., I. Jolliffe, and D. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, https://doi.org/10.1002/joc.1499.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1988: Pips and pops: The reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res., 93, 11 01511 021, https://doi.org/10.1029/JD093iD09p11015.

    • Search Google Scholar
    • Export Citation
  • Hirose, M., R. Oki, S. Shimizu, M. Kachi, and T. Higashiuwatoko, 2008: Finescale diurnal rainfall statistics refined from eight years of TRMM PR data. J. Appl. Meteor. Climatol., 47, 544561, https://doi.org/10.1175/2007JAMC1559.1.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., 1984: Complex principal component analysis: Theory and examples. J. Climate Appl. Meteor., 23, 16601673, https://doi.org/10.1175/1520-0450(1984)023<1660:CPCATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436, https://doi.org/10.1175/JAS3810.1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, https://doi.org/10.1175/2007JCLI2051.1.

    • Search Google Scholar
    • Export Citation
  • Kim, K.-Y., and Q. Wu, 1999: A comparison study of EOF techniques: Analysis of nonstationary data with periodic statistics. J. Climate, 12, 185199, https://doi.org/10.1175/1520-0442-12.1.185.

    • Search Google Scholar
    • Export Citation
  • Kim, K.-Y., G. R. North, and J. Huang, 1996: EOFs of one-dimensional cyclostationary time series: Computations, examples, and stochastic modeling. J. Atmos. Sci., 53, 10071017, https://doi.org/10.1175/1520-0469(1996)053<1007:EOODCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leroy, B., 2012: Fast calculation of the Lomb-Scargle periodogram using nonequispaced fast Fourier transforms. Astron. Astrophys., 545, A50, https://doi.org/10.1051/0004-6361/201219076.

    • Search Google Scholar
    • Export Citation
  • Lomb, N. R., 1976: Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci., 39, 447462, https://doi.org/10.1007/BF00648343.

    • Search Google Scholar
    • Export Citation
  • Lupo, A. R., J. J. Nocera, L. F. Bosart, E. G. Hoffman, and D. J. Knight, 2001: South American cold surges: Types, composites, and case studies. Mon. Wea. Rev., 129, 10211041, https://doi.org/10.1175/1520-0493(2001)129<1021:SACSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, M. Xu, and A. J. Negri, 2003: Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Mon. Wea. Rev., 131, 799812, https://doi.org/10.1175/1520-0493(2003)131<0799:DPORIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mathias, A., F. Grond, R. Guardans, D. Seese, M. Canela, H. H. Diebner, and G. Baiocchi, 2004: Algorithms for spectral analysis of irregularly sampled time series. J. Stat. Software, 11, 130, https://doi.org/10.18637/jss.v011.i02.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., F. T. Tangang, and W. W. Hsieh, 1999: A potential problem with extended EOF analysis of standing wave fields. Atmos.–Ocean, 37, 241254, https://doi.org/10.1080/07055900.1999.9649628.

    • Search Google Scholar
    • Export Citation
  • Negri, A., L. Xu, and R. Adler, 2002: A TRMM-calibrated infrared rainfall algorithm applied over Brazil. J. Geophys. Res., 107, 8048, https://doi.org/10.1029/2000JD000265.

    • Search Google Scholar
    • Export Citation
  • Nickolls, J., I. Buck, M. Garland, and K. Skadron, 2008: Scalable parallel programming with CUDA. Queue, 6, 4053, https://doi.org/10.1145/1365490.1365500.

    • Search Google Scholar
    • Export Citation
  • North, G. R., 1984: Empirical orthogonal functions and normal modes. J. Atmos. Sci., 41, 879887, https://doi.org/10.1175/1520-0469(1984)041<0879:EOFANM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., and G. B. Rybicki, 1989: Fast algorithm for spectral analysis of unevenly sampled data. Astrophys. J., 338, 277280, https://doi.org/10.1086/167197.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and R. C. J. Somerville, 2009: Assessing the diurnal cycle of precipitation in a multi-scale climate model. J. Adv. Model. Earth Syst., 1, 12, https://doi.org/10.3894/JAMES.2009.1.12.

    • Search Google Scholar
    • Export Citation
  • Scargle, J. D., 1982: Studies in astronomical time series analysis. II—Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J., 263, 835853, https://doi.org/10.1086/160554.

    • Search Google Scholar
    • Export Citation
  • Scargle, J. D., 1989: Studies in astronomical time series analysis. III—Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data. Astrophys. J., 343, 874887, https://doi.org/10.1086/167757.

    • Search Google Scholar
    • Export Citation
  • Schulz, M., and K. Stattegger, 1997: SPECTRUM: Spectral analysis of unevenly spaced paleoclimatic time series. Comput. Geosci., 23, 929945, https://doi.org/10.1016/S0098-3004(97)00087-3.

    • Search Google Scholar
    • Export Citation
  • Steidl, G., 1998: A note on fast Fourier transforms for nonequispaced grids. Adv. Comput. Math., 9, 337352, https://doi.org/10.1023/A:1018901926283.

    • Search Google Scholar
    • Export Citation
  • Townsend, R. H. D., 2010: Fast calculation of the Lomb–Scargle periodogram using graphics processing units. Astrophys. J., Suppl. Ser., 191, 247253, https://doi.org/10.1088/0067-0049/191/2/247.

    • Search Google Scholar
    • Export Citation
  • Venugopal, V., K. Virts, J. Sukhatme, J. Wallace, and B. Chattopadhyay, 2016: A comparison of the fine-scale structure of the diurnal cycle of tropical rain and lightning. Atmos. Res., 169, 515522, https://doi.org/10.1016/j.atmosres.2015.09.004.

    • Search Google Scholar
    • Export Citation
  • Wu, P., J.-I. Hamada, M. D. Yamanaka, J. Matsumoto, and M. Hara, 2009: The impact of orographically-induced gravity waves on the diurnal cycle of rainfall over southeast Kalimantan Island. Atmos. Ocean. Sci. Lett., 2, 3539, https://doi.org/10.1080/16742834.2009.11446773.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zechmeister, M., and M. Kürster, 2009: The generalised Lomb–Scargle periodogram: A new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys., 496, 577584, https://doi.org/10.1051/0004-6361:200811296.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 11 11 0
Full Text Views 799 283 17
PDF Downloads 750 211 13