A New Model to Downscale Urban and Rural Surface and Air Temperatures Evaluated in Shanghai, China

Dongwei Liu Shanghai Institute of Meteorological Science, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Dongwei Liu in
Current site
Google Scholar
PubMed
Close
,
C. S. B. Grimmond Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by C. S. B. Grimmond in
Current site
Google Scholar
PubMed
Close
,
Jianguo Tan Shanghai Climate Center, Shanghai Meteorological Service, and Key Open Laboratory of Cities’ Mitigation and Adaptation to Climate Change in Shanghai, China Meteorological Administration, and Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Jianguo Tan in
Current site
Google Scholar
PubMed
Close
,
Xiangyu Ao Shanghai Institute of Meteorological Science, and Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Xiangyu Ao in
Current site
Google Scholar
PubMed
Close
,
Jie Peng Shanghai Institute of Meteorological Science, and Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Jie Peng in
Current site
Google Scholar
PubMed
Close
,
Linli Cui Shanghai Institute of Meteorological Science, and Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Linli Cui in
Current site
Google Scholar
PubMed
Close
,
Bingxin Ma Shanghai Institute of Meteorological Science, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Bingxin Ma in
Current site
Google Scholar
PubMed
Close
,
Yan Hu Shanghai Institute of Meteorological Science, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Yan Hu in
Current site
Google Scholar
PubMed
Close
, and
Mingbin Du Shanghai Institute of Meteorological Science, Shanghai Meteorological Service, Shanghai, China

Search for other papers by Mingbin Du in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A simple model, the Surface Temperature and Near-Surface Air Temperature (at 2 m) Model (TsT2m), is developed to downscale numerical model output (such as from ECMWF) to obtain higher-temporal- and higher-spatial-resolution surface and near-surface air temperature. It is evaluated in Shanghai, China. Surface temperature (Ts) and near-surface air temperature (Ta) submodels account for variations in land cover and their different thermal properties, resulting in spatial variations of surface and air temperature. The net all-wave radiation parameterization (NARP) scheme is used to compute net wave radiation for the surface temperature submodel, the objective hysteresis model (OHM) is used to calculate the net storage heat fluxes, and the surface temperature is obtained by the force-restore method. The near-surface air temperature submodel considers the horizontal and vertical energy changes for a column of well-mixed air above the surface. Modeled surface temperatures reproduce the general pattern of MODIS images well, while providing more detailed patterns of the surface urban heat island. However, the simulated surface temperatures capture the warmer urban land cover and are 10.3°C warmer on average than those derived from the coarser MODIS data. For other land-cover types, values are more similar. Downscaled, higher-temporal- and higher-spatial-resolution air temperatures are compared to observations at 110 automatic weather stations across Shanghai. After downscaling with TsT2m, the average forecast accuracy of near-surface air temperature is improved by about 20%. The scheme developed has considerable potential for prediction and mitigation of urban climate conditions, particularly for weather and climate services related to heat stress.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Jianguo Tan, jianguot@21cn.com, tanjg@smb.gov.cn

Abstract

A simple model, the Surface Temperature and Near-Surface Air Temperature (at 2 m) Model (TsT2m), is developed to downscale numerical model output (such as from ECMWF) to obtain higher-temporal- and higher-spatial-resolution surface and near-surface air temperature. It is evaluated in Shanghai, China. Surface temperature (Ts) and near-surface air temperature (Ta) submodels account for variations in land cover and their different thermal properties, resulting in spatial variations of surface and air temperature. The net all-wave radiation parameterization (NARP) scheme is used to compute net wave radiation for the surface temperature submodel, the objective hysteresis model (OHM) is used to calculate the net storage heat fluxes, and the surface temperature is obtained by the force-restore method. The near-surface air temperature submodel considers the horizontal and vertical energy changes for a column of well-mixed air above the surface. Modeled surface temperatures reproduce the general pattern of MODIS images well, while providing more detailed patterns of the surface urban heat island. However, the simulated surface temperatures capture the warmer urban land cover and are 10.3°C warmer on average than those derived from the coarser MODIS data. For other land-cover types, values are more similar. Downscaled, higher-temporal- and higher-spatial-resolution air temperatures are compared to observations at 110 automatic weather stations across Shanghai. After downscaling with TsT2m, the average forecast accuracy of near-surface air temperature is improved by about 20%. The scheme developed has considerable potential for prediction and mitigation of urban climate conditions, particularly for weather and climate services related to heat stress.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Jianguo Tan, jianguot@21cn.com, tanjg@smb.gov.cn
Save
  • Allen, L., F. Lindberg, and C. S. B. Grimmond, 2011: Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Climatol., 31, 19902005, https://doi.org/10.1002/joc.2210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anandakumar, K., 1999: A study on the partition of net radiation into heat fluxes on a dry asphalt surface. Atmos. Environ., 33, 39113918, https://doi.org/10.1016/S1352-2310(99)00133-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., C. S. B. Grimmond, D. Liu, Z. Han, P. Hu, Y. Wang, X. Zhen, and J. Tan, 2016a: Radiation fluxes in a business district of Shanghai, China. J. Appl. Meteor.Climatol., 55, 24512468, https://doi.org/10.1175/JAMC-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., C. S. B. Grimmond, Y. Chang, D. Liu, Y. Tang, and P. Hu, 2016b: Heat, water and carbon exchanges in the tall megacity of Shanghai: Challenges and results. Int. J. Climatol., 36, 46084624, https://doi.org/10.1002/joc.4657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., and C. S. B. Grimmond, 1998: An urban energy budget model and its application to urban storage heat flux modeling. Energy Build., 27, 6168, https://doi.org/10.1016/S0378-7788(97)00026-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asaeda, T., and V. T. Ca, 1993: The subsurface transport of heat and moisture and its effect on the environment: A numerical model. Bound.-Layer Meteor., 65, 159179, https://doi.org/10.1007/BF00708822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atwater, M. A., and P. S. Brown, 1974: Numerical computations of the latitudinal variation of solar radiation for an atmosphere of varying opacity. J. Appl. Meteor., 13, 289297, https://doi.org/10.1175/1520-0450-13.2.289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atwater, M. A., and J. T. Ball, 1981: A surface solar radiation model for cloudy atmospheres. Mon. Wea. Rev., 109, 878888, https://doi.org/10.1175/1520-0493(1981)109<0878:ASSRMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basu, R., and J. M. Samet, 2002: Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence. Epidemiol. Rev., 24, 190202, https://doi.org/10.1093/epirev/mxf007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtel, B., Z. Klemen, and H. Gholamali, 2012: Downscaling land surface temperature in an urban area: A case study for Hamburg, Germany. Remote Sens., 4, 31843200, https://doi.org/10.3390/rs4103184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., 1998: A model to predict surface temperatures. Bound.-Layer Meteor., 88, 279306, https://doi.org/10.1023/A:1001151927113.

  • Best, M. J., and C. S. B. Grimmond, 2015: Key conclusions of the First International Urban Land Surface Model Comparison Project. Bull. Amer. Meteor. Soc., 96, 805819, https://doi.org/10.1175/BAMS-D-14-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhumralkar, C. M., 1975: Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. J. Appl. Meteor., 14, 12461258, https://doi.org/10.1175/1520-0450(1975)014<1246:NEOTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1976: Modeling the nocturnal boundary layer. Preprints, Third Symp. on Atmospheric Turbulence, Diffusion, and Air, Raleigh, NC, Amer. Meteor. Soc., 46–49.

  • Bonafoni, S., 2016: Downscaling of Landsat and MODIS land surface temperature over the heterogeneous urban area of Milan. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 20192027, https://doi.org/10.1109/JSTARS.2016.2514367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, W. B., and Coauthors, 2006: MODIS land cover and LAI collection 4 product quality across nine states in the western hemisphere. IEEE Trans. Geosci. Remote Sens., 44, 18431857, https://doi.org/10.1109/TGRS.2006.876026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diefenderfer, B. K., I. L. Al-Qadi, and S. D. Diefenderfer, 2006: Model to predict pavement temperature profile: Development and validation. J. Transp. Eng., 132, 162167, https://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(162).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doll, D., J. K. S. Ching, and J. Kaneshiro, 1985: Parameterization of subsurface heating for soil and concrete using net radiation data. Bound.-Layer Meteor., 32, 351372, https://doi.org/10.1007/BF00122000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabey, A. M., C. S. B. Grimmond, and I. Capel-Timms, 2018: Anthropogenic heat flux: Advisable spatial resolutions when input data are scarce. Theor. Appl. Climatol., https://doi.org/10.1007/s00704-018-2367-y, in press.

    • Search Google Scholar
    • Export Citation
  • Gallo, P., A. L. McNab, T. R. Karl, J. F. Brown, J. J. Hood, and J. D. Tarpley, 1993: The use of NOAA AVHRR data for assessment of the urban heat island effect. J. Appl. Meteor., 32, 899908, https://doi.org/10.1175/1520-0450(1993)032<0899:TUONAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, N. B., S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. G. Wu, X. M. Bai, and J. M. Briggs, 2008: Global change and the ecology of cities. Science, 319, 756760, https://doi.org/10.1126/science.1150195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1999: Heat storage in urban areas: local-scale observations and evaluation of a simple model. J. Appl. Meteor., 38, 922940, https://doi.org/10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., H. A. Cleugh, and T. R. Oke, 1991: An objective urban heat storage model and its comparison with other schemes. Atmos. Environ., 25B, 311326, https://doi.org/10.1016/0957-1272(91)90003-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2010: The international Urban Energy Balance Models Comparison Project: First results from phase 1. J. Appl. Meteor. Climatol., 49, 12681292, https://doi.org/10.1175/2010JAMC2354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2011: Initial results from phase 2 of the International Urban Energy Balance Model Comparison. Int. J. Climatol., 31, 244272, https://doi.org/10.1002/joc.2227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, G., X. Zhou, Z. Wu, R. Xiao, and Y. Chen, 2016: Characterizing the impact of urban morphology heterogeneity on land surface temperature in Guangzhou, China. Environ. Modell. Software, 84, 427439, https://doi.org/10.1016/j.envsoft.2016.06.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herb, W. R., B. Janke, O. Mohseni, and H. G. Stefan, 2008: Ground surface temperature simulation for different land covers. J. Hydrol., 356, 327343, https://doi.org/10.1016/j.jhydrol.2008.04.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honjo, T., H. Yamato, T. Mikami, and C. S. B. Grimmond, 2015: Network optimization for enhanced resilience of urban heat island measurements. Sustainable Cities Soc., 19, 319330, https://doi.org/10.1016/j.scs.2015.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., and S. Islam, 1995: Prediction of ground surface temperature and soil moisture content by the force-restore method. Water Resour. Res., 31, 25312539, https://doi.org/10.1029/95WR01650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Järvi, L., C. S. B. Grimmond, and M. Taka, 2014: Development of the Surface Urban Energy and Water Balance Scheme (SUEWS) for cold climate cities. Geosci. Model Dev., 7, 16911711, https://doi.org/10.5194/gmd-7-1691-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, M. S., W. Kessomkiat, and G. Pereira, 2011: Satellite-observed urbanization characters in Shanghai, China: Aerosols, urban heat island effect, and land–atmosphere interactions. Remote Sens., 3, 8399, https://doi.org/10.3390/rs3010083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalma, J. D., T. R. McVicar, and M. F. McCabe, 2008: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys., 29, 421469, https://doi.org/10.1007/s10712-008-9037-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y. H., and J. J. Baik, 2005: Spatial and temporal structure of the urban heat island in Seoul. J. Appl. Meteor., 44, 591605, https://doi.org/10.1175/JAM2226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroyer, S., S. Belair, and J. Mailhot, 2011: Microscale numerical prediction over Montreal with the Canadian External Urban Modeling System. J. Appl. Meteor. Climatol, 50, 24102428, https://doi.org/10.1175/JAMC-D-11-013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R., Y. Zhang, and W. U. Jie, 2017: Interpolation methods for temperature distribution of urban communities in southern China (in Chinese). Build. Sci., 33 (12), 2737.

    • Search Google Scholar
    • Export Citation
  • Lindberg, F., and Coauthors, 2018: Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services. Environ. Modell. Software, 99, 7087, https://doi.org/10.1016/j.envsoft.2017.09.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loridan, T., C. S. B. Grimmond, B. D. Offerle, D. T. Young, T. E. Smith, L. Järvi, and F. Lindberg, 2011: Local-Scale Urban Meteorological Parameterization Scheme (LUMPS): Longwave radiation parameterization and seasonality-related developments. J. Appl. Meteor. Climatol., 50, 185202, https://doi.org/10.1175/2010JAMC2474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., R. S. Loomis, and T. C. Hsiao, 1992: Simulation of soil temperature in crops. Agric. For. Meteor., 61, 2338, https://doi.org/10.1016/0168-1923(92)90023-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaughey, J. H., 1985: Energy balance storage terms in a mature mixed forest at Petawawa, Ontario—A case study. Bound.-Layer Meteor., 31, 89101, https://doi.org/10.1007/BF00120036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, J. E., 1960: Direct absorption of solar radiation by atmospheric water vapor. J. Meteor., 17, 319328, https://doi.org/10.1175/1520-0469(1960)017<0319:DAOSRB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, T. P., and R. F. Dale, 1983: Predicting daily insolation with hourly cloud height and coverage. J. Climate Appl. Meteor., 22, 537545, https://doi.org/10.1175/1520-0450(1983)022<0537:PDIWHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyn, S. K., and T. R. Oke, 2009: Heat fluxes through roofs and their relevance to estimates of urban heat storage. Energy Build., 41, 745752, https://doi.org/10.1016/j.enbuild.2009.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mihailović, D. T., 1991: A model for prediction of the soil temperature and the soil moisture content in three layers. Z. Meteor., 41, 2933.

    • Search Google Scholar
    • Export Citation
  • Mihailović, D. T., 1996: Description of a land-air parameterization scheme (LAPS). Global Planet. Change, 13, 207215, https://doi.org/10.1016/0921-8181(95)00048-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mihailović, D. T., and J. Eitzinger, 2007: Modelling temperatures of crop environment. Ecol. Modell., 202, 465475, https://doi.org/10.1016/j.ecolmodel.2006.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, https://doi.org/10.1002/qj.49712252905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narita, K., T. Sekine, and T. Tokuoka, 1984: Thermal properties of urban surface materials: Study on heat balance at asphalt pavement. Geogr. Rev. Japan, 57, 639651, https://doi.org/10.4157/grj1984a.57.9_639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nichol, J. E., W. Y. Fung, K. Lam, and M. S. Wong, 2009: Urban heat island diagnosis using ASTER satellite images and in situ air temperature. Atmos. Res., 94, 276284, https://doi.org/10.1016/j.atmosres.2009.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, M. D., 1981: The moisture and thermal regimes of a bare soil in the Lower Fraser Valley during spring. Ph.D. thesis, University of British Columbia, Vancouver, BC, Canada, 153 pp.

  • Offerle, B., C. S. B. Grimmond, and T. R. Oke, 2003: Parameterization of net all-wave radiation for urban areas. J. Appl. Meteor., 42, 11571173, https://doi.org/10.1175/1520-0450(2003)042<1157:PONARF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1973: City size and the urban heat island. Atmos. Environ., 7, 769779, https://doi.org/10.1016/0004-6981(73)90140-6.

  • Oke, T. R., 1988: The urban energy balance. Prog. Phys. Geogr., 12, 471508, https://doi.org/10.1177/030913338801200401.

  • Oke, T. R., 1995: The heat island of the urban boundary layer: Characteristics, causes and effects. Wind Climate in Cities, J. E. Cermak et al., Eds., NATO ASI Series E, Vol. 227, Kluwer Academic, 81–107.

    • Crossref
    • Export Citation
  • O’Malley, C., P. A. E. Piroozfarb, E. R.P. Farr, and J. Gates, 2014: An investigation into minimizing urban heat island (UHI) effects: A UK perspective. Energy Procedia, 62, 7280, https://doi.org/10.1016/j.egypro.2014.12.368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, X., X. Li, X. Shi, X. Han, and L. Luo, 2012: Dynamic downscaling of near-surface air temperature at the basin scale using WRF—A case study in the Heihe River basin, China. Front. Earth Sci., 6, 314323, https://doi.org/10.1007/s11707-012-0306-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raich, J. W., and W. H. Schlesinger, 1992: The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 8199, https://doi.org/10.3402/tellusb.v44i2.15428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, S. M., T. R. Oke, C. S. B. Grimmond, and J. A. Voogt, 2006: Comparison of four methods to estimate urban heat storage. J. Appl. Meteor. Climatol., 45, 17661781, https://doi.org/10.1175/JAM2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, M., T. R. Oke, and W. J. Emery, 1989: Satellite derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens., 10, 16991720, https://doi.org/10.1080/01431168908904002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, J., and P. J. Lister, 1996: An automated nowcasting model of road surface temperature and state for winter road maintenance. J. Appl. Meteor., 35, 13521361, https://doi.org/10.1175/1520-0450(1996)035<1352:AANMOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepard, D., 1968: A two-dimensional interpolation function for regularly spaced data. Proc. 23rd National Conf. of American Computing Machinery, Princeton, NJ, Association for Computing Machinery, 517–524.

    • Crossref
    • Export Citation
  • Smith, W. L., 1966: Note on the relationship between total precipitable water and surface dew point. J. Appl. Meteor., 5, 726727, https://doi.org/10.1175/1520-0450(1966)005<0726:NOTRBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • South, C., C. S. B. Grimmond, and C. P. Wolfe, 1998: Evapotranspiration rates from wetlands with different disturbance histories: Indiana Dunes National Lakeshore. Wetlands, 18, 216229, https://doi.org/10.1007/BF03161657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, J. B., and M. O. Rodgers, 2001: Urban form and thermal efficiency: How the design of cities influences the urban heat island effect. J. Amer. Plann. Assoc., 67, 186198, https://doi.org/10.1080/01944360108976228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, T., Z. H. Wang, W. Oechel, and C. S. B. Grimmond, 2017: The Analytical Objective Hysteresis Model (AnOHM v1. 0): Methodology to determine bulk storage heat flux coefficients. Geosci. Model Dev., 10, 28752890, https://doi.org/10.5194/gmd-10-2875-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taesler, R., 1980a: Studies of the development and thermal structure of the urban boundary layer in Uppsala. Part I: Experimental program. Meteorological Institution, Uppsala University Rep. 61, 63 pp.

  • Taesler, R., 1980b: Studies of the development and thermal structure of the urban boundary layer in Uppsala. Part II: Data analysis and results. Meteorological Institution, Uppsala University Rep. 61, 181 pp.

  • Taha, H., 1999: Modifying a mesoscale meteorological model to better incorporate urban heat storage: A bulk-parameterization approach. J. Appl. Meteor., 38, 466473, https://doi.org/10.1175/1520-0450(1999)038<0466:MAMMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., and Coauthors, 2015: Urban integrated meteorological observations: Practice and experience in Shanghai, China. Bull. Amer. Meteor. Soc., 96, 85102, https://doi.org/10.1175/BAMS-D-13-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trumbore, S., O. A. Chadwick, and R. Amundson, 1996: Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science, 272, 393396, https://doi.org/10.1126/science.272.5260.393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van De Griend, A. A., and M. Owe, 1993: On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Int. J. Remote Sens., 14, 11191131, https://doi.org/10.1080/01431169308904400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., Y. Li, K. Wang, X. Yang, and P. W. Chan, 2017: A simple daily cycle temperature boundary condition for ground surfaces in CFD predictions of urban wind flows. J. Appl. Meteor. Climatol., 56, 29632980, https://doi.org/10.1175/JAMC-D-17-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, Q., D. Lu, and J. Schubring, 2004: Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ., 89, 467483, https://doi.org/10.1016/j.rse.2003.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winkler, J. A., J. P. Palutikof, J. A. Andresen, and C. M. Goodess, 1997: The simulation of daily temperature time series from GCM output. Part II: Sensitivity analysis of an empirical transfer function methodology. J. Climate, 10, 25142532, https://doi.org/10.1175/1520-0442(1997)010<2514:TSODTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., M. J. Wooster, and C. S. B. Grimmond, 2008: Modelling of urban sensible heat flux at multiple spatial scales: A demonstration using airborne hyperspectral imagery of Shanghai and a temperature–emissivity separation approach. Remote Sens. Environ., 112, 34933510, https://doi.org/10.1016/j.rse.2008.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345364, https://doi.org/10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, A., K. Tominaga, and S. Watatani, 1990: Field measurements on energy balance of an urban canyon in the summer season. Energy Build., 15, 417423, https://doi.org/10.1016/0378-7788(90)90016-C.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yow, D. M., 2007: Urban heat islands: Observations, impacts, and adaptation. Geogr. Compass, 1, 12271251, https://doi.org/10.1111/j.1749-8198.2007.00063.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zerenner, T., V. Venem, P. Friederichs, and C. Simmer, 2016: Downscaling near-surface atmospheric fields with multi-objective genetic programming. Environ. Modell. Software, 84, 8598, https://doi.org/10.1016/j.envsoft.2016.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., Y. X. Shou, R. R. Dickerson, and F. Chen, 2011: Impact of upstream urbanization on the urban heat island effects along the Washington–Baltimore corridor. J. Appl. Meteor. Climatol., 50, 20122029, https://doi.org/10.1175/JAMC-D-10-05008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., A. Y. Xiong, J. Y. Zhang, M. N. Feng, and B. M. Wang, 2009: Preliminary study on the scoring methods of cloud-free rainfall/snowfall and air temperature forecasts (in Chinese). J. Appl. Meteor. Sci., 20, 692698.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 868 263 18
PDF Downloads 567 95 9