Prediction of the Onset of Heavy Rain Using SEVIRI Cloud Observations

Maximilien Patou Université de Lille, CNRS, UMR 8518-LOA-Laboratoire d’optique Atmosphérique, F-5900 Lille, France

Search for other papers by Maximilien Patou in
Current site
Google Scholar
PubMed
Close
,
Jérôme Vidot Centre de Météorologie Spatiale, Météo-France, Lannion, France

Search for other papers by Jérôme Vidot in
Current site
Google Scholar
PubMed
Close
,
Jérôme Riédi Université de Lille, CNRS, UMR 8518-LOA-Laboratoire d’optique Atmosphérique, F-59000 Lille, France

Search for other papers by Jérôme Riédi in
Current site
Google Scholar
PubMed
Close
,
Guillaume Penide Université de Lille, CNRS, UMR 8518-LOA-Laboratoire d’optique Atmosphérique, F-59000 Lille, France

Search for other papers by Guillaume Penide in
Current site
Google Scholar
PubMed
Close
, and
Timothy J. Garrett Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Timothy J. Garrett in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Thunderstorms and strong precipitation events can be highly variable in space and time and therefore are challenging to forecast. Geostationary satellites are particularly well suited for studying their occurrence and development. This paper describes a methodology for tracking temporal trends in the development of these systems using a combination of a ground-based radar rainfall product and cloud fields derived from the Meteosat Second Generation’s (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). Cloud microphysical and radiative properties and the cloud perimeter-to-area ratio are used to characterize the temporal evolution of 35 cases of isolated convective development. For synchronizing temporal trends between cases, two reference times are used: the time when precipitating clouds reach a rain intensity threshold and the time of the maximum of rain intensity during the cloud life cycle. A period of decreasing cloud perimeter-to-area ratio before heavy rainfall is observed for both synchronization techniques, suggesting this parameter could be a predictor of heavy rain occurrence. However, the choice of synchronization time does impact significantly the observed trend of cloud properties. An illustration of how this approach can be applied to cloud-resolving models is presented to evaluate their ability to simulate cloud processes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maximilien Patou, maximilien.patou@ed.univ-lille1.fr

Abstract

Thunderstorms and strong precipitation events can be highly variable in space and time and therefore are challenging to forecast. Geostationary satellites are particularly well suited for studying their occurrence and development. This paper describes a methodology for tracking temporal trends in the development of these systems using a combination of a ground-based radar rainfall product and cloud fields derived from the Meteosat Second Generation’s (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). Cloud microphysical and radiative properties and the cloud perimeter-to-area ratio are used to characterize the temporal evolution of 35 cases of isolated convective development. For synchronizing temporal trends between cases, two reference times are used: the time when precipitating clouds reach a rain intensity threshold and the time of the maximum of rain intensity during the cloud life cycle. A period of decreasing cloud perimeter-to-area ratio before heavy rainfall is observed for both synchronization techniques, suggesting this parameter could be a predictor of heavy rain occurrence. However, the choice of synchronization time does impact significantly the observed trend of cloud properties. An illustration of how this approach can be applied to cloud-resolving models is presented to evaluate their ability to simulate cloud processes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maximilien Patou, maximilien.patou@ed.univ-lille1.fr
Save
  • Adachi, A., T. Kobayashi, H. Yamauchi, and S. Onogi, 2013: Detection of potentially hazardous convective clouds with a dual-polarized C-band radar. Atmos. Meas. Tech., 6, 27412760, https://doi.org/10.5194/amt-6-2741-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and D. D. Fenn, 1979: Thunderstorm vertical velocities estimated from satellite data. J. Atmos. Sci., 36, 17471754, https://doi.org/10.1175/1520-0469(1979)036<1747:TVVEFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnaud, Y., M. Desbois, and J. Maizi, 1992: Automatic tracking and characterization of African convective systems on Meteosat pictures. J. Appl. Meteor., 31, 443453, https://doi.org/10.1175/1520-0450(1992)031<0443:ATACOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batista-Tomás, A. R., O. Díaz, A. J. Batista-Leyva, and E. Altshuler, 2016: Classification and dynamics of tropical clouds by their fractal dimension. Quart. J. Roy. Meteor. Soc., 142, 983988, https://doi.org/10.1002/qj.2699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., and K. Khlopenkov, 2016: A probabilistic multispectral pattern recognition method for detection of overshooting cloud tops using passive satellite imager observations. J. Appl. Meteor. Climatol., 55, 19832005, https://doi.org/10.1175/JAMC-D-15-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., J. Brunner, R. Dworak, W. Feltz, J. Otkin, and T. Greenwald, 2010: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181202, https://doi.org/10.1175/2009JAMC2286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berendes, T. A., J. R. Mecikalski, W. M. MacKenzie, K. M. Bedka, and U. S. Nair, 2008: Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering. J. Geophys. Res., 113, D20207, https://doi.org/10.1029/2008JD010287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bley, S., H. Deneke, and F. Senf, 2016: Meteosat-based characterization of the spatiotemporal evolution of warm convective cloud fields over central Europe. J. Appl. Meteor. Climatol., 55, 21812195, https://doi.org/10.1175/JAMC-D-15-0335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, 1949: The Thunderstorm: Report of the Thunderstorm Project. U.S. Government Printing Office, 287 pp.

  • Carvalho, L. M. V., and C. Jones, 2001: A satellite method to identify structural properties of mesoscale convective systems based on the maximum spatial correlation tracking technique (MASCOTTE). J. Appl. Meteor., 40, 16831701, https://doi.org/10.1175/1520-0450(2001)040<1683:ASMTIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and A. K. Heidinger, 2013: Evolution of severe and nonsevere convection inferred from GOES-derived cloud properties. J. Appl. Meteor. Climatol., 52, 20092023, https://doi.org/10.1175/JAMC-D-12-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and D. T. Lindsey, 2014: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639653, https://doi.org/10.1175/WAF-D-13-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529, https://doi.org/10.1007/s00703-001-0584-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2013: Direct entrainment and detrainment rate distributions of individual shallow cumulus clouds in an LES. Atmos. Chem. Phys., 13, 77957811, https://doi.org/10.5194/acp-13-7795-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and P. A. Siebesma, 2010: Analytical expressions for entrainment and detrainment in cumulus convection. Quart. J. Roy. Meteor. Soc., 136, 12161227, https://doi.org/10.1002/qj.640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, https://doi.org/10.1002/qj.1959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derrien, M., and H. Le Gléau, 2005: MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens., 26, 47074732, https://doi.org/10.1080/01431160500166128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derrien, M., and H. Le Gléau, 2010: Improvement of cloud detection near sunrise and sunset by temporal-differencing and region-growing techniques with real-time SEVIRI. Int. J. Remote Sens., 31, 17651780, https://doi.org/10.1080/01431160902926632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Figueras i Ventura, J., and P. Tabary, 2013: The new French operational polarimetric radar rainfall rate product. J. Appl. Meteor. Climatol., 52, 18171835, https://doi.org/10.1175/JAMC-D-12-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glenn, I. B., and S. K. Krueger, 2017: Connections matter: Updraft merging in organized tropical deep convection. Geophys. Res. Lett., 44, 70877094, https://doi.org/10.1002/2017GL074162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., and Y. N. Takayabu, 2016: Convective cloud top vertical velocity estimated from geostationary satellite rapid-scan measurements. Geophys. Res. Lett., 43, 54355441, https://doi.org/10.1002/2016GL068962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., and M. J. Pavolonis, 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48, 11001116, https://doi.org/10.1175/2008JAMC1882.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., M. J. Pavolonis, R. E. Holz, B. A. Baum, and S. Berthier, 2010: Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES-R/ABI. J. Geophys. Res., 115, D00H20, https://doi.org/10.1029/2009JD012152.

    • Search Google Scholar
    • Export Citation
  • Henken, C. C., M. J. Schmeits, H. Deneke, and R. A. Roebeling, 2011: Using MSG-SEVIRI cloud physical properties and weather radar observations for the detection of Cb/TCu Clouds. J. Appl. Meteor. Climatol., 50, 15871600, https://doi.org/10.1175/2011JAMC2601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ICARE/AERIS, 2017: Algorithm details: SEV06-CLD project. ICARE Data and Services Center, https://dx.doi.org/10.25326/1.

    • Crossref
    • Export Citation
  • Kolios, S., and H. Feidas, 2013: An automated nowcasting system of mesoscale convective systems for the Mediterranean basin using Meteosat imagery. Part I: System description. Meteor. Appl., 20, 287295, https://doi.org/10.1002/met.1282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Gléau, H., 2016: Algorithm theoretical basis document for the cloud product processors of the NWC/GEO. Tech. Rep., EUMETSAT/SAFNWC/Météo France, 114 pp., http://www.nwcsaf.org/web/guest/scientific-documentation.

  • Lensky, I. M., and D. Rosenfeld, 2006: The time–space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius. Atmos. Chem. Phys., 6, 28872894, https://doi.org/10.5194/acp-6-2887-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and D. Rosenfeld, 2008: Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT). Atmos. Chem. Phys., 8, 67396753, https://doi.org/10.5194/acp-8-6739-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., C. Liu, X. Gu, and D. Qin, 2015: Detection of rapidly developing convection using rapid scan data from a geostationary satellite. Remote Sens. Lett., 6, 604612, https://doi.org/10.1080/2150704X.2015.1062160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., D. B. Weber, and C. A. Doswell III, 2008: Parameterized mesoscale forcing mechanisms for initiating numerically simulated isolated multicellular convection. Mon. Wea. Rev., 136, 24082421, https://doi.org/10.1175/2007MWR2133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., 1982: Area–perimeter relation for rain and cloud areas. Science, 216, 185187, https://doi.org/10.1126/science.216.4542.185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and H. Laurent, 2004: The convective system area expansion over Amazonia and its relationships with convective system life duration and high-level wind divergence. Mon. Wea. Rev., 132, 714725, https://doi.org/10.1175/1520-0493(2004)132<0714:TCSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, https://doi.org/10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathon, V., and H. Laurent, 2001: Life cycle of Sahelian mesoscale convective cloud systems. Quart. J. Roy. Meteor. Soc., 127, 377406, https://doi.org/10.1002/qj.49712757208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAnelly, R. L., and W. R. Cotton, 1989: The precipitation life cycle of mesoscale convective complexes over the central United States. Mon. Wea. Rev., 117, 784808, https://doi.org/10.1175/1520-0493(1989)117<0784:TPLCOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., and K. M. Bedka, 2006: Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev., 134, 4978, https://doi.org/10.1175/MWR3062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., K. M. Bedka, S. J. Paech, and L. A. Litten, 2008: A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation. Mon. Wea. Rev., 136, 48994914, https://doi.org/10.1175/2008MWR2352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., W. M. MacKenzie Jr., M. Koenig, and S. Muller, 2010a: Cloud-top properties of growing cumulus prior to convective initiation as measured by Meteosat Second Generation. Part I: Infrared fields. J. Appl. Meteor. Climatol., 49, 521534, https://doi.org/10.1175/2009JAMC2344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., W. M. MacKenzie Jr., M. Koenig, and S. Muller, 2010b: Cloud-top properties of growing cumulus prior to convective initiation as measured by Meteosat Second Generation. Part II: Use of visible reflectance. J. Appl. Meteor. Climatol., 49, 25442558, https://doi.org/10.1175/2010JAMC2480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., P. D. Watts, and M. Koenig, 2011: Use of Meteosat Second Generation optimal cloud analysis fields for understanding physical attributes of growing cumulus clouds. Atmos. Res., 102, 175190, https://doi.org/10.1016/j.atmosres.2011.06.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., P. Minnis, and R. Palikonda, 2013: Use of satellite derived cloud properties to quantify growing cumulus beneath cirrus clouds. Atmos. Res., 120–121, 192201, https://doi.org/10.1016/j.atmosres.2012.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., J. K. Williams, C. P. Jewett, D. Ahijevych, A. LeRoy, and J. R. Walker, 2015: Probabilistic 1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data. J. Appl. Meteor. Climatol., 54, 10391059, https://doi.org/10.1175/JAMC-D-14-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., C. P. Jewett, J. M. Apke, and L. D. Carey, 2016a: Analysis of cumulus cloud updrafts as observed with 1-min resolution super rapid scan GOES imagery. Mon. Wea. Rev., 144, 811830, https://doi.org/10.1175/MWR-D-14-00399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., D. Rosenfeld, and A. Manzato, 2016b: Evaluation of geostationary satellite observations and the development of a 1–2 h prediction model for future storm intensity. J. Geophys. Res., 121, 63746392, https://doi.org/10.1002/2016JD024768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 339, https://doi.org/10.1016/S0169-8095(97)00018-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morel, C., and S. Senesi, 2002a: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: Methodology. Quart. J. Roy. Meteor. Soc., 128, 19531971, https://doi.org/10.1256/003590002320603485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morel, C., and S. Senesi, 2002b: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. II: Characteristics of European mesoscale convective systems. Quart. J. Roy. Meteor. Soc., 128, 19731995, https://doi.org/10.1256/003590002320603494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, B. R., F. R. S. Sir Geoffrey Taylor, and J. S. Turner, 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London, 234A, 123, https://doi.org/10.1098/rspa.1956.0011.

    • Search Google Scholar
    • Export Citation
  • Moseley, C., C. Hohenegger, P. Berg, and J. O. Haerter, 2016: Intensification of convective extremes driven by cloud–cloud interaction. Nat. Geosci., 9, 748752, https://doi.org/10.1038/ngeo2789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893, https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Negri, A. J., and R. F. Adler, 1981: Relation of satellite-based thunderstorm intensity to radar-estimated rainfall. J. Appl. Meteor., 20, 288300, https://doi.org/10.1175/1520-0450(1981)020<0288:ROSBTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., J. Y. Li, M. D. King, H. Gerber, and P. V. Hobbs, 2001: A solar reflectance method for retrieving the optical thickness and droplet size of liquid water clouds over snow and ice surfaces. J. Geophys. Res., 106, 15 18515 199, https://doi.org/10.1029/2000JD900441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, https://doi.org/10.1109/TGRS.2002.808301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502525, https://doi.org/10.1109/TGRS.2016.2610522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renard, F., P.-M. Chapon, and J. Comby, 2012: Assessing the accuracy of weather radar to track intense rain cells in the Greater Lyon area, France. Atmos. Res., 103, 419, https://doi.org/10.1016/j.atmosres.2011.08.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., and S. Rutledge, 2003: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea. Forecasting, 18, 562584, https://doi.org/10.1175/1520-0434(2003)018<0562:NSIAGU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca, R., T. Fiolleau, and D. Bouniol, 2017: A simple model of the life cycle of mesoscale convective systems cloud shield in the tropics. J. Climate, 30, 42834298, https://doi.org/10.1175/JCLI-D-16-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., and I. Holleman, 2009: SEVIRI rainfall retrieval and validation using weather radar observations. J. Geophys. Res., 114, D21202, https://doi.org/10.1029/2009JD012102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Lerner, G. Kelman, and D. T. Lindsey, 2008: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res., 113, D04208, https://doi.org/10.1029/2007JD008600.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182195, https://doi.org/10.1175/1520-0450(2004)043<0182:ALMAPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and S. C. van den Heever, 2013: Developments in the CSU-RAMS aerosol model: Emissions, nucleation, regeneration, deposition, and radiation. J. Appl. Meteor. Climatol., 52, 26012622, https://doi.org/10.1175/JAMC-D-12-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992, https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senf, F., and H. Deneke, 2017a: Satellite-based characterization of convective growth and glaciation and its relationship to precipitation formation over central Europe. J. Appl. Meteor. Climatol., 56, 18271845, https://doi.org/10.1175/JAMC-D-16-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senf, F., and H. Deneke, 2017b: Uncertainties in synthetic Meteosat SEVIRI infrared brightness temperatures in the presence of cirrus clouds and implications for evaluation of cloud microphysics. Atmos. Res., 183, 113129, https://doi.org/10.1016/j.atmosres.2016.08.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senf, F., F. Dietzsch, A. Hünerbein, and H. Deneke, 2015: Characterization of initiation and growth of selected severe convective storms over central Europe with MSG-SEVIRI. J. Appl. Meteor. Climatol., 54, 207224, https://doi.org/10.1175/JAMC-D-14-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., L. M. Cronce, W. F. Feltz, K. M. Bedka, M. J. Pavolonis, and A. K. Heidinger, 2011: Nowcasting convective storm initiation using satellite-based box-averaged cloud-top cooling and cloud-type trends. J. Appl. Meteor. Climatol., 50, 110126, https://doi.org/10.1175/2010JAMC2496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., L. M. Cronce, and W. F. Feltz, 2014: Improving satellite-based convective cloud growth monitoring with visible optical depth retrievals. J. Appl. Meteor. Climatol., 53, 506520, https://doi.org/10.1175/JAMC-D-13-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinkevich, A. A., and T. W. Krauss, 2014: Changes in thunderstorm characteristics due to feeder cloud merging. Atmos. Res., 142, 124132, https://doi.org/10.1016/j.atmosres.2013.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, P., and J. S. Turner, 1962: An entraining jet model for cumulo-nimbus updraughts. Tellus, 14, 422434, https://doi.org/10.3402/tellusa.v14i4.9569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tabary, P., 2007: The new French operational radar rainfall product. Part I: Methodology. Wea. Forecasting, 22, 393408, https://doi.org/10.1175/WAF1004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tabary, P., J. Desplats, K. D. Khac, F. Eideliman, C. Gueguen, and J.-C. Heinrich, 2007: The new French operational radar rainfall product. Part II: Validation. Wea. Forecasting, 22, 409427, https://doi.org/10.1175/WAF1005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemi, T., 2007: Environmental stability control of the intensity of squall lines under low-level shear conditions. J. Geophys. Res., 112, D24110, https://doi.org/10.1029/2007JD008793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1963: The motion of buoyant elements in turbulent surroundings. J. Fluid Mech., 16, 116, https://doi.org/10.1017/S0022112063000549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Walt, S., and Coauthors, 2014: scikit-image: Image processing in Python. 19 pp., http://arxiv.org/abs/1407.6245.

    • Crossref
    • Export Citation
  • Vila, D., and L. Machado, 2004: Shape and radiative properties of convective systems observed from infrared satellite images. Int. J. Remote Sens., 25, 44414456, https://doi.org/10.1080/01431160410001726085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vila, D., L. Machado, H. Laurent, and I. Velasco, 2008: Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) using satellite infrared imagery: Methodology and validation. Wea. Forecasting, 23, 233245, https://doi.org/10.1175/2007WAF2006121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R., W. Cotton, M. Meyers, and J. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 2962, https://doi.org/10.1016/0169-8095(94)00087-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolters, E. L. A., R. A. Roebeling, and A. J. Feijt, 2008: Evaluation of cloud-phase retrieval methods for SEVIRI on Meteosat-8 using ground-based lidar and cloud radar data. J. Appl. Meteor. Climatol., 47, 17231738, https://doi.org/10.1175/2007JAMC1591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, K., E. Otoo, and A. Shoshani, 2005: Optimizing connected component labeling algorithms. Lawrence Berkeley National Laboratory, 13 pp., http://www.escholarship.org/uc/item/7jg5d1zn.

    • Crossref
    • Export Citation
  • Wyser, K., 1998: The effective radius in ice clouds. J. Climate, 11, 17931802, https://doi.org/10.1175/1520-0442(1998)011<1793:TERIIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and S. Platnick, 2011: An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS spectral bands. J. Geophys. Res., 116, D20215, https://doi.org/10.1029/2011JD016216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., A. S. Ackerman, G. Feingold, S. Platnick, R. Pincus, and H. Xue, 2012: Effects of cloud horizontal inhomogeneity and drizzle on remote sensing of cloud droplet effective radius: Case studies based on large-eddy simulations. J. Geophys. Res., 117, D19208, https://doi.org/10.1029/2012JD017655.

    • Search Google Scholar
    • Export Citation
  • Zinner, T., H. Mannstein, and A. Tafferner, 2008: Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data. Meteor. Atmos. Phys., 101, 191210, https://doi.org/10.1007/s00703-008-0290-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 696 116 5
PDF Downloads 409 101 2