Present Climate Evaluation and Added Value Analysis of Dynamically Downscaled Simulations of CORDEX—East Asia

Delei Li Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Delei Li in
Current site
Google Scholar
PubMed
Close
,
Baoshu Yin Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Baoshu Yin in
Current site
Google Scholar
PubMed
Close
,
Jianlong Feng National Marine Data and Information Service, Tianjin, China

Search for other papers by Jianlong Feng in
Current site
Google Scholar
PubMed
Close
,
Alessandro Dosio European Commission, Joint Research Centre, Ispra, Italy

Search for other papers by Alessandro Dosio in
Current site
Google Scholar
PubMed
Close
,
Beate Geyer Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research, Geesthacht, Germany

Search for other papers by Beate Geyer in
Current site
Google Scholar
PubMed
Close
,
JiFeng Qi Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China

Search for other papers by JiFeng Qi in
Current site
Google Scholar
PubMed
Close
,
Hongyuan Shi School of Civil Engineering, Ludong University, Yantai, China

Search for other papers by Hongyuan Shi in
Current site
Google Scholar
PubMed
Close
, and
Zhenhua Xu Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Zhenhua Xu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, we investigate the skills of the regional climate model Consortium for Small-Scale Modeling in Climate Mode (CCLM) in reproducing historical climatic features and their added value to the driving global climate models (GCMs) of the Coordinated Regional Climate Downscaling Experiment—East Asia (CORDEX-EA) domain. An ensemble of climate simulations, with a resolution of 0.44°, was conducted by downscaling four GCMs: CNRM-CM5, EC-EARTH, HadGEM2, and MPI-ESM-LR. The CCLM outputs were compared with different observations and reanalysis datasets. Results showed strong seasonal variability of CCLM’s ability in reproducing climatological means, variability, and extremes. The bias of the simulated summer temperatures is generally smaller than that of the winter temperatures; in addition, areas where CCLM adds value to the driving GCMs in simulating temperature are larger in the winter than in the summer. CCLM outperforms GCMs in terms of generating climatological precipitation means and daily precipitation distributions for most regions in the winter, but this is not always the case for the summer. It was found that CCLM biases are partly inherited from GCMs and are significantly shaped by structural biases of CCLM. Furthermore, downscaled simulations show added value in capturing features of consecutive wet days for the tropics and of consecutive dry days for areas to the north of 30°N. We found considerable uncertainty from reanalysis and observation datasets in temperatures and precipitation climatological means for some regions that rival bias values of GCMs and CCLM simulations. We recommend carefully selecting reference datasets when evaluating modeled climate means.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-18-0008.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhenhua Xu, xuzhenhua@qdio.ac.cn

Abstract

In this study, we investigate the skills of the regional climate model Consortium for Small-Scale Modeling in Climate Mode (CCLM) in reproducing historical climatic features and their added value to the driving global climate models (GCMs) of the Coordinated Regional Climate Downscaling Experiment—East Asia (CORDEX-EA) domain. An ensemble of climate simulations, with a resolution of 0.44°, was conducted by downscaling four GCMs: CNRM-CM5, EC-EARTH, HadGEM2, and MPI-ESM-LR. The CCLM outputs were compared with different observations and reanalysis datasets. Results showed strong seasonal variability of CCLM’s ability in reproducing climatological means, variability, and extremes. The bias of the simulated summer temperatures is generally smaller than that of the winter temperatures; in addition, areas where CCLM adds value to the driving GCMs in simulating temperature are larger in the winter than in the summer. CCLM outperforms GCMs in terms of generating climatological precipitation means and daily precipitation distributions for most regions in the winter, but this is not always the case for the summer. It was found that CCLM biases are partly inherited from GCMs and are significantly shaped by structural biases of CCLM. Furthermore, downscaled simulations show added value in capturing features of consecutive wet days for the tropics and of consecutive dry days for areas to the north of 30°N. We found considerable uncertainty from reanalysis and observation datasets in temperatures and precipitation climatological means for some regions that rival bias values of GCMs and CCLM simulations. We recommend carefully selecting reference datasets when evaluating modeled climate means.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-18-0008.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhenhua Xu, xuzhenhua@qdio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.23 MB)
Save
  • Bao, J. W., J. M. Feng, and Y. L. Wang, 2015: Dynamical downscaling simulation and future projection of precipitation over China. J. Geophys. Res. Atmos., 120, 82278243, https://doi.org/10.1002/2015JD023275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. R., C. Jakob, and J. M. Haynes, 2010: An evaluation of rainfall frequency and intensity over the Australian region in a global climate model. J. Climate, 23, 65046525, https://doi.org/10.1175/2010JCLI3571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and O. W. Frauenfeld, 2014: A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections: CMIP5 precipitation in China. J. Geophys. Res. Atmos., 119, 57675786, https://doi.org/10.1002/2013JD021190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., T. R. Carter, M. Rummukainen, and G. Amanatidis, 2007: Evaluating the performance and utility of regional climate models: The PRUDENCE project. Climatic Change, 81 (Suppl. 1), 16, https://doi.org/10.1007/s10584-006-9211-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, and Coauthors, 2011: Development and evaluation of an Earth-system model—HadGEM2. Geosci. Model Dev., 4, 10511075, https://doi.org/10.5194/gmd-4-1051-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dosio, A., H. J. Panitz, M. Schubert-Frisius, and D. Luthi, 2015: Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: Evaluation over the present climate and analysis of the added value. Climate Dyn., 44, 26372661, https://doi.org/10.1007/s00382-014-2262-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., C. J. Vörösmarty, J. O. Roads, and C. J. Willmott, 2004: Uncertainties in precipitation and their impacts on runoff estimates. J. Climate, 17, 294304, https://doi.org/10.1175/1520-0442(2004)017<0294:UIPATI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., T. Wei, W. Dong, Q. Wu, and Y. Wang, 2014: CMIP5/AMIP GCM simulations of East Asian summer monsoon. Adv. Atmos. Sci., 31, 836850, https://doi.org/10.1007/s00376-013-3131-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feser, F., B. Rockel, H. von Storch, J. Winterfeldt, and M. Zahn, 2011: Regional climate models add value to global model data: A review and selected examples. Bull. Amer. Meteor. Soc., 92, 11811192, https://doi.org/10.1175/2011BAMS3061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frich, P., L. V. Alexander, P. M. Della-Marta, B. Gleason, M. Haylock, A. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193212, https://doi.org/10.3354/cr019193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, C., and Coauthors, 2005: Regional Climate Model Intercomparison Project for Asia. Bull. Amer. Meteor. Soc., 86, 257266, https://doi.org/10.1175/BAMS-86-2-257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., Z. Zhao, and F. Giorgi, 2002: Changes of extreme events in regional climate simulations over East Asia. Adv. Atmos. Sci., 19, 927942, https://doi.org/10.1007/s00376-002-0056-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., Y. Shi, D. Zhang, and F. Giorgi, 2012a: Climate change in China in the 21st century as simulated by a high resolution regional climate model. Chin. Sci. Bull., 57, 11881195, https://doi.org/10.1007/s11434-011-4935-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., Y. Shi, D. Zhang, J. Wu, F. Giorgi, Z. Ji, and Y. Wang, 2012b: Uncertainties in monsoon precipitation projections over China: Results from two high-resolution RCM simulations. Climate Res., 52, 213226, https://doi.org/10.3354/cr01084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., and D. Chen, 2017: Modeling of regional climate over the Tibetan Plateau. Oxford Research Encyclopedia of Climate Science, https://doi.org/10.1093/acrefore/9780190228620.013.591.

    • Crossref
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M., and Coauthors, 2012: CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-LR model: The historical experiment, served by ESGF. WDC Climate, accessed 6 November 2015, https://doi.org/10.1594/WDCC/CMIP5.MXELhi.

    • Crossref
    • Export Citation
  • Giorgi, F., and G. T. Bates, 1989: The climatological skill of a regional model over complex terrain. Mon. Wea. Rev., 117, 23252347, https://doi.org/10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183, http://wcrp.ipsl.jussieu.fr/cordex/documents/CORDEX_giorgi_WMO.pdf.

    • Search Google Scholar
    • Export Citation
  • Guo, Y., W. Dong, F. Ren, Z. Zhao, and J. Huang, 2013: Assessment of CMIP5 simulations for China annual average surface temperature and its comparison with CMIP3 simulations. Adv. Climate Change Res., 9, 181186, https://doi.org/10.3969/j.issn.1673-1719.2013.03.004.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2010: EC-Earth: A seamless Earth-system prediction approach in action. Bull. Amer. Meteor. Soc., 91, 13571363, https://doi.org/10.1175/2010BAMS2877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hostetler, S., J. Alder, and A. Allan, 2011: Dynamically downscaled climate simulations over North America: Methods, evaluation, and supporting documentation for users. U.S. Geological Survey Open-File Rep. 2011-1238, 64 pp., https://pubs.usgs.gov/of/2011/1238/pdf/ofr20111238.pdf.

    • Crossref
    • Export Citation
  • Huang, B., S. Polanski, and U. Cubasch, 2015: Assessment of precipitation climatology in an ensemble of CORDEX-East Asia regional climate simulations. Climate Res., 64, 141158, https://doi.org/10.3354/cr01302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, D.-Q., J. Zhu, Y.-C. Zhang, and A.-N. Huang, 2013: Uncertainties on the simulated summer precipitation over eastern China from the CMIP5 models. J. Geophys. Res. Atmos., 118, 90359047, https://doi.org/10.1002/jgrd.50695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014a: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. C. B. Field et al., Eds., Cambridge University Press, 1132 pp., http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-PartA_FINAL.pdf.

  • IPCC, 2014b: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. V. R. Barros et al., Eds., Cambridge University Press, 688 pp., http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-PartB_FINAL.pdf.

  • Jacob, D., and Coauthors, 2014: Erratum to: EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change, 14, 579581, https://doi.org/10.1007/s10113-014-0587-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, Z., and S. Kang, 2015: Evaluation of extreme climate events using a regional climate model for China. Int. J. Climatol., 35, 888902, https://doi.org/10.1002/joc.4024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp., https://doi.org/10.1007/978-1-935704-36-2_1.

    • Crossref
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan Ser. II, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P., S. Kotlarski, C. Moseley, K. Sieck, H. Frey, M. Stoffel, and D. Jacob, 2015: Response of Karakoram–Himalayan glaciers to climate variability and climatic change: A regional climate model assessment. Geophys. Res. Lett., 42, 18181825, https://doi.org/10.1002/2015GL063392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., R. Mizuta, and M. Matsueda, 2011: Future changes in the East Asian rain band projected by global atmospheric models with 20-km and 60-km grid size. Climate Dyn., 37, 24812493, https://doi.org/10.1007/s00382-011-1000-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-W., and S.-Y. Hong, 2014: Potential for added value to downscaled climate extremes over Korea by increased resolution of a regional climate model. Theor. Appl. Climatol., 117, 667677, https://doi.org/10.1007/s00704-013-1034-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-W., S.-Y. Hong, E.-C. Chang, M.-S. Suh, and H.-S. Kang, 2014: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Climate Dyn., 42, 733747, https://doi.org/10.1007/s00382-013-1841-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., 2017: Added value of high-resolution regional climate model: Selected cases over the Bohai Sea and the Yellow Sea areas. Int. J. Climatol., 37, 169179, https://doi.org/10.1002/joc.4695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., H. von Storch, and B. Geyer, 2016: High-resolution wind hindcast over the Bohai Sea and the Yellow Sea in East Asia: Evaluation and wind climatology analysis. J. Geophys. Res. Atmos., 121, 111129, https://doi.org/10.1002/2015JD024177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., F. Giorgi, and W. M. Washington, 1994: Simulation of summer monsoon climate over East Asia with an NCAR regional climate model. Mon. Wea. Rev., 122, 23312348, https://doi.org/10.1175/1520-0493(1994)122<2331:SOSMCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, https://doi.org/10.1002/qj.49712353704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McSweeney, C. F., R. G. Jones, R. W. Lee, and D. P. Rowell, 2015: Selecting CMIP5 GCMs for downscaling over multiple regions. Climate Dyn., 44, 32373260, https://doi.org/10.1007/s00382-014-2418-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehran, A., A. AghaKouchak, and T. J. Phillips, 2014: Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res. Atmos., 119, 16951707, https://doi.org/10.1002/2013JD021152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, X., and Coauthors, 2015: Multimodel ensemble projection of precipitation in eastern China under A1B emission scenario. J. Geophys. Res. Atmos., 120, 99659980, https://doi.org/10.1002/2015JD023853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, S.-G., J.-H. Park, S.-H. Lee, and M.-S. Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res. Atmos., 119, 29132927, https://doi.org/10.1002/2013JD020693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, C., and Coauthors, 2016: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Climate Dyn., 46, 24692486, https://doi.org/10.1007/s00382-015-2713-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritter, B., and J.-F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325, https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rockel, B., and B. Geyer, 2008: The performance of the regional climate model CLM in different climate regions, based on the example of precipitation. Meteor. Z., 17, 487498, https://doi.org/10.1127/0941-2948/2008/0297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rockel, B., A. Will, and A. Hense, 2008: The Regional Climate Model COSMO-CLM (CCLM). Meteor. Z., 17, 347348, https://doi.org/10.1127/0941-2948/2008/0309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schättler, U., G. Doms, and C. Schraff, 2018: A description of the nonhydrostatic regional COSMO-Model. Part VII: User’s guide (COSMO V5.05). Deutscher Wetterdienst Rep., 175 pp., http://www.cosmo-model.org/content/model/documentation/core/cosmo_userguide_5.05.pdf.

  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrodin, R., and E. Heise, 2002: A new multi-layer soil-model. COSMO Newsletter, No. 2, Consortium for Small-Scale Modeling, Offenbach, Germany, 139–151, http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter02/newsLetter_02.pdf.

  • Schulz, J.-P., 2008: Introducing sub-grid scale orographic effects in the COSMO model. COSMO Newsletter, No. 9, Consortium for Small-Scale Modeling, Offenbach, Germany, 29–36, http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter09/cnl9-06.pdf.

  • Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 17161733, https://doi.org/10.1002/jgrd.50203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2014: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Climate, 27, 16791697, https://doi.org/10.1175/JCLI-D-13-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 27112744, https://doi.org/10.1007/s00382-012-1607-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, J., and Coauthors, 2016: Building Asian climate change scenario by multi-regional climate models ensemble. Part I: Surface air temperature. Int. J. Climatol., 36, 42414252, https://doi.org/10.1002/joc.4628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, M.-J., Y. Kim, and J. Kim, 2017: Evaluating historical drought characteristics simulated in CORDEX East Asia against observations. Int. J. Climatol., 37, 46434655, https://doi.org/10.1002/joc.5112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Linden, P., and J. F. B. Mitchell, Eds., 2009: ENSEMBLES: Climate change and its impacts—Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, 160 pp.

  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, https://doi.org/10.1007/s00382-011-1259-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

    • Crossref
    • Export Citation
  • von Storch, H., and Coauthors, 2017: Regional reanalysis without local data: Exploiting the downscaling paradigm. J. Geophys. Res. Atmos., 122, 86318649, https://doi.org/10.1002/2016JD026332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Bao, B. Hoskins, G. Wu, and Y. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, https://doi.org/10.1029/2008GL034330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., C. Menz, T. Simon, C. Simmer, and C. Ohlwein, 2013: Regional dynamical downscaling with CCLM over East Asia. Meteor. Atmos. Phys., 121, 3953, https://doi.org/10.1007/s00703-013-0250-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WCRP, 2009: Coordinated Regional Climate Downscaling Experiment (CORDEX). Accessed 25 March 2018, http://cordex.org/?option=com_content&view=featured&Itemid=476.

  • Wu, F.-T., and Coauthors, 2016: Evaluation and projection of summer extreme precipitation over East Asia in the Regional Model Inter-comparison Project. Climate Res., 69, 4558, https://doi.org/10.3354/cr01384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, https://doi.org/10.1175/JHM583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Z. H., Y. J. Zeng, J. Xia, P.-H. Qin, B.-H. Jia, J. Zou, and S. Liu, 2017: Coupled modeling of land hydrology–regional climate including human carbon emission and water exploitation. Adv. Climate Change Res., 8, 6879, https://doi.org/10.1016/j.accre.2017.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., T. Koike, B. Ye, and L. Bastidas, 2005: Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition. J. Geophys. Res., 110, D08101, https://doi.org/10.1029/2004JD005500.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, https://doi.org/10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., A. S. Zakey, X. Gao, F. Giorgi, and F. Solmon, 2009: Simulation of dust aerosol and its regional feedbacks over East Asia using a regional climate model. Atmos. Chem. Phys., 9, 10951110, https://doi.org/10.5194/acp-9-1095-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. Klein Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, https://doi.org/10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and R. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, https://doi.org/10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
  • Zhou, W. D., J. P. Tang, X. Y. Wang, S. Wang, X. Niu, and Y. Wang, 2016: Evaluation of regional climate simulations over the CORDEX-EA-II domain using the COSMO-CLM model. Asia-Pac. J. Atmos. Sci., 52, 107127, https://doi.org/10.1007/s13143-016-0013-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, L. W., and T. J. Zhou, 2013: Near future (2016–40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM. Adv. Atmos. Sci., 30, 806818, https://doi.org/10.1007/s00376-013-2209-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, L. W., T. J. Zhou, and D. D. Peng, 2016: Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean–atmosphere coupled model to stand-alone RCM simulations. J. Geophys. Res. Atmos., 121, 14421458, https://doi.org/10.1002/2015JD023912.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 801 169 16
PDF Downloads 911 133 10