Daily Precipitation Fields Modeling across the Great Lakes Region (Canada) by Using the CFSR Reanalysis

Dikra Khedhaouiria Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE), Québec City, Québec, Canada

Search for other papers by Dikra Khedhaouiria in
Current site
Google Scholar
PubMed
Close
,
Alain Mailhot Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE), Québec City, Québec, Canada

Search for other papers by Alain Mailhot in
Current site
Google Scholar
PubMed
Close
, and
Anne-Catherine Favre Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE), Québec City, Québec, Canada

Search for other papers by Anne-Catherine Favre in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Reanalyses, generated by numerical weather prediction methods assimilating past observations, provide consistent and continuous meteorological fields for a specific period. In regard to precipitation, reanalyses cannot be used as a climate proxy of the observed precipitation, as biases and scale mismatches exist between the datasets. In the present study, a stochastic model output statistics (SMOS) approach combined with meta-Gaussian spatiotemporal random fields was employed to cope with these caveats. The SMOS is based on the generalized linear model (GLM) and the vector generalized linear model (VGLM) frameworks to model the precipitation occurrence and intensity, respectively. Both models use the Climate Forecast System Reanalysis (CFSR) precipitation as covariate and were locally calibrated at 173 sites across the Great Lakes region. Combined with meta-Gaussian random fields, the GLM and VGLM models allowed for the generation of spatially coherent daily precipitation fields across the region. The results indicated that the approach corrected systematic biases and provided an accurate spatiotemporal structure of daily precipitation. Performances of selected precipitation indicators from the joint Commission for Climatology (CCl)/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI) were good and were systematically improved when compared to CFSR.

Current affiliation: Université Grenobles Alpes, CNRS, IRD, Grenoble INP, IGE, F-38000 Grenoble, France.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-18-0019.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dikra Khedhaouiria, dikra.khedhaouiria@ete.inrs.ca

Abstract

Reanalyses, generated by numerical weather prediction methods assimilating past observations, provide consistent and continuous meteorological fields for a specific period. In regard to precipitation, reanalyses cannot be used as a climate proxy of the observed precipitation, as biases and scale mismatches exist between the datasets. In the present study, a stochastic model output statistics (SMOS) approach combined with meta-Gaussian spatiotemporal random fields was employed to cope with these caveats. The SMOS is based on the generalized linear model (GLM) and the vector generalized linear model (VGLM) frameworks to model the precipitation occurrence and intensity, respectively. Both models use the Climate Forecast System Reanalysis (CFSR) precipitation as covariate and were locally calibrated at 173 sites across the Great Lakes region. Combined with meta-Gaussian random fields, the GLM and VGLM models allowed for the generation of spatially coherent daily precipitation fields across the region. The results indicated that the approach corrected systematic biases and provided an accurate spatiotemporal structure of daily precipitation. Performances of selected precipitation indicators from the joint Commission for Climatology (CCl)/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI) were good and were systematically improved when compared to CFSR.

Current affiliation: Université Grenobles Alpes, CNRS, IRD, Grenoble INP, IGE, F-38000 Grenoble, France.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-18-0019.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dikra Khedhaouiria, dikra.khedhaouiria@ete.inrs.ca

Supplementary Materials

    • Supplemental Materials (PDF 2.86 MB)
Save
  • Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Automat. Contr., 19, 716723, https://doi.org/10.1109/TAC.1974.1100705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asong, Z. E., M. N. Khaliq, and H. S. Wheater, 2016: Multisite multivariate modeling of daily precipitation and temperature in the Canadian Prairie Provinces using generalized linear models. Climate Dyn., 47, 29012921, https://doi.org/10.1007/s00382-016-3004-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bardossy, A., and E. J. Plate, 1992: Space-time model for daily rainfall using atmospheric circulation patterns. Water Resour. Res., 28, 12471259, https://doi.org/10.1029/91WR02589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baxevani, A., and J. Lennartsson, 2015: A spatiotemporal precipitation generator based on a censored latent Gaussian field. Water Resour. Res., 51, 43384358, https://doi.org/10.1002/2014WR016455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaulieu, C., O. Seidou, T. B. M. J. Ouarda, X. Zhang, G. Boulet, and A. Yagouti, 2008: Intercomparison of homogenization techniques for precipitation data. Water Resour. Res., 44, W02425, https://doi.org/10.1029/2006WR005615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., A. I. J. M. van Dijk, V. Levizzani, J. Schellekens, D. G. Miralles, B. Martens, and A. de Roo, 2017: MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci., 21, 589615, https://doi.org/10.5194/hess-21-589-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Y. Tian, B. H. Lambrigtsen, and G. L. Stephens, 2014: What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? Water Resour. Res., 50, 48934905, https://doi.org/10.1002/2013WR014566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and J. Shukla, 1988: Integration of space and in situ observations to study global climate change. Bull. Amer. Meteor. Soc., 69, 11301143, https://doi.org/10.1175/1520-0477(1988)069<1130:IOSAIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, B., M. Thyer, M. Leonard, M. Lambert, and B. Bates, 2018: A comprehensive and systematic evaluation framework for a parsimonious daily rainfall field model. J. Hydrol., 556, 11231138, https://doi.org/10.1016/j.jhydrol.2016.12.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., L. Terray, F. Habets, and E. Martin, 2006: A simple statistical-dynamical downscaling scheme based on weather types and conditional resampling. J. Geophys. Res., 111, D23106, https://doi.org/10.1029/2005JD006889.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209, https://doi.org/10.1175/2011JCLI4074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buishand, T. A., and T. Brandsma, 2001: Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest-neighbor resampling. Water Resour. Res., 37, 27612776, https://doi.org/10.1029/2001WR000291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buishand, T. A., M. V. Shabalova, and T. Brandsma, 2004: On the choice of the temporal aggregation level for statistical downscaling of precipitation. J. Climate, 17, 18161827, https://doi.org/10.1175/1520-0442(2004)017<1816:OTCOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandler, R. E., and H. S. Wheater, 2002: Analysis of rainfall variability using generalized linear models: A case study from the west of Ireland. Water Resour. Res., 38, 1192, https://doi.org/10.1029/2001WR000906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cleveland, W. S., and S. J. Devlin, 1988: Locally weighted regression: An approach to regression analysis by local fitting. J. Amer. Stat. Assoc., 83, 596610, https://doi.org/10.1080/01621459.1988.10478639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coe, R., and R. Stern, 1982: Fitting models to daily rainfall data. J. Appl. Meteor., 21, 10241031, https://doi.org/10.1175/1520-0450(1982)021<1024:FMTDRD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Contractor, S., L. V. Alexander, M. G. Donat, and N. Herold, 2015: How well do gridded datasets of observed daily precipitation compare over Australia? Adv. Meteor., 2015, 325718, https://doi.org/10.1155/2015/325718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressie, N., and H.-C. Huang, 1999: Classes of nonseparable, spatio-temporal stationary covariance functions. J. Amer. Stat. Assoc., 94, 13301340, https://doi.org/10.1080/01621459.1999.10473885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

  • Devine, K. A., and E. Mekis, 2008: Field accuracy of Canadian rain measurements. Atmos.–Ocean, 46, 213227, https://doi.org/10.3137/ao.460202.

  • Environment and Climate Change Canada, 2013: Adjusted Precipitation and Homogenized Canadian Climate Data (AHCCD). ECCC, accessed 15 January 2016, https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/adjusted-homogenized-canadian-data.html.

  • Eum, H.-I., A. J. Cannon, and T. Q. Murdock, 2017: Intercomparison of multiple statistical downscaling methods: Multi-criteria model selection for South Korea. Stochastic Environ. Res. Risk Assess., 31, 683703, https://doi.org/10.1007/s00477-016-1312-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gervais, M., J. Gyakum, E. Atallah, L. B. Tremblay, and R. B. Neale, 2014a: How well are the distribution and extreme values of daily precipitation over North America represented in the community climate system model? A comparison to reanalysis, satellite, and gridded station data. J. Climate, 27, 52195239, https://doi.org/10.1175/JCLI-D-13-00320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gervais, M., L. B. Tremblay, J. R. Gyakum, and E. Atallah, 2014b: Representing extremes in a daily gridded precipitation analysis over the United States: Impacts of station density, resolution, and gridding methods. J. Climate, 27, 52015218, https://doi.org/10.1175/JCLI-D-13-00319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlandt, U., Y. Hundecha, M. Pahlow, and A. H. Schumann, 2011: Rainfall generators for application in flood studies. Flood Risk Assessment and Management: How to Specify Hydrological Loads, Their Consequences and Uncertainties, A. H. Schumann, Ed., Springer, 117–147, https://doi.org/10.1007/978-90-481-9917-4.

    • Crossref
    • Export Citation
  • Hofstra, N., M. New, and C. McSweeney, 2010: The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Climate Dyn., 35, 841858, https://doi.org/10.1007/s00382-009-0698-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkinson, R. F., D. W. McKenney, E. J. Milewska, M. F. Hutchinson, P. Papadopol, and L. A. Vincent, 2011: Impact of aligning climatological day on gridding daily maximum-minimum temperature and precipitation over Canada. J. Appl. Meteor. Climatol., 50, 16541665, https://doi.org/10.1175/2011JAMC2684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, B. Rudolf, U. Schneider, and P. R. Keehn, 1995: Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J. Climate, 8, 12841295, https://doi.org/10.1175/1520-0442(1995)008<1284:GPEBOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1962: Rank Correlation Methods. 3rd ed. Charles Griffin and Co., 199 pp.

  • Khedhaouiria, D., A. Mailhot, and A.-C. Favre, 2018: Stochastic post-processing of CFSR daily precipitation across Canada. Atmos.–Ocean, 56, 104116, https://doi.org/10.1080/07055900.2018.1434122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleiber, W., R. W. Katz, and B. Rajagopalan, 2012: Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes. Water Resour. Res., 48, W01523, https://doi.org/10.1029/2011WR011105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, R., D. Faulkner, P. Wass, and D. Cameron, 2016: Have applications of continuous rainfall runoff simulation realized the vision for process-based flood frequency analysis? Hydrol. Processes, 30, 24632481, https://doi.org/10.1002/hyp.10882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J ., M. Thyer, M. Lambert, G. Kuczera, and A. Metcalfe, 2014: An efficient causative event-based approach for deriving the annual flood frequency distribution. J. Hydrol., 510, 412423, https://doi.org/10.1016/j.jhydrol.2013.12.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, F., E. Volpi, D. Koutsoyiannis, and F. Serinaldi, 2017: A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall. Water Resour. Res., 53, 45864605, https://doi.org/10.1002/2017WR020529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorente-Plazas, R., and J. P. Hacker, 2017: Observation and model bias estimation in the presence of either or both sources of error. Mon. Wea. Rev., 145, 26832696, https://doi.org/10.1175/MWR-D-16-0273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas-Picher, P., R. Laprise, and K. Winger, 2017: Evidence of added value in North American regional climate model hindcast simulations using ever-increasing horizontal resolutions. Climate Dyn., 48, 26112633, https://doi.org/10.1007/s00382-016-3227-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCullag, P., and J. A. Nelder, 1989: Generalized Linear Models. 2nd ed. Chapman and Hall, 532 pp.

    • Crossref
    • Export Citation
  • Mekis, E., 2005: Adjustments for trace measurements in Canada. 15th Conf. on Applied Climatology/13th Symp. on Meteorological Observations and Instrumentation, Savannah, GA, Amer. Meteor. Soc., J3.7, https://ams.confex.com/ams/15AppClimate/techprogram/paper_92155.htm.

  • Mekis, E., and L. A. Vincent, 2011: An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmos.–Ocean, 49, 163177, https://doi.org/10.1080/07055900.2011.583910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveau, P., R. Huser, P. Ribereau, and A. Hannart, 2016: Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection. Water Resour. Res., 52, 27532769, https://doi.org/10.1002/2015WR018552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neykov, N. M., P. N. Neytchev, and W. Zucchini, 2014: Stochastic daily precipitation model with a heavy-tailed component. Nat. Hazards Earth Syst. Sci., 14, 23212335, https://doi.org/10.5194/nhess-14-2321-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onof, C., R. E. Chandler, A. Kakou, P. Northrop, H. S. Wheater, and V. Isham, 2000: Rainfall modelling using Poisson-cluster processes: A review of developments. Stochastic Environ. Res. Risk Assess., 14, 384411, https://doi.org/10.1007/s004770000043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pegram, G., and A. Clothier, 2001: High resolution space–time modeling of rainfall: The “string of beads” model. J. Hydrol., 241, 2641, https://doi.org/10.1016/S0022-1694(00)00373-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., C. Folland, G. Gruza, W. Hogg, A. Mokssit, and N. Plummer, 2001: Report on the activities of the Working Group on Climate Change Detection and related rapporteurs 1998–2001. WMO Tech. Rep., 143 pp., http://etccdi.pacificclimate.org/docs/wgccd.2001.pdf.

  • Plummer, D. A., and Coauthors, 2006: Climate and climate change over North America as simulated by the Canadian RCM. J. Climate, 19, 31123132, https://doi.org/10.1175/JCLI3769.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Podgórski, K., and J. Wegener, 2012: Velocities of a spatial–temporal stochastic field with embedded dynamics. Environmetrics, 23, 238252, https://doi.org/10.1002/env.2135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlather, M., and Coauthors, 2017: RandomFields: Simulation and analysis of random fields: R package version 3.1.50. Comprehensive R Archive Network, 374 pp., https://cran.r-project.org/web/packages/RandomFields/RandomFields.pdf.

  • Schmidli, J., C. Frei, and P. L. Vidale, 2006: Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Climatol., 26, 679689, https://doi.org/10.1002/joc.1287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serinaldi, F., and C. G. Kilsby, 2014: Simulating daily rainfall fields over large areas for collective risk estimation. J. Hydrol., 512, 285302, https://doi.org/10.1016/j.jhydrol.2014.02.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, M. L., 1999: Interpolation of Spatial Data: Some Theory for Kriging. Springer-Verlag, 249 pp.

    • Crossref
    • Export Citation
  • Stern, R. D., and R. Coe, 1984: A model fitting analysis of daily rainfall data. J. Roy. Stat. Soc., 147A, 134, https://doi.org/10.2307/2981736.

    • Search Google Scholar
    • Export Citation
  • Sun, X., A. P. Barros, X. Sun, and A. P. Barros, 2010: An evaluation of the statistics of rainfall extremes in rain gauge observations, satellite-based and reanalysis products using universal multifractals. J. Hydrometeor., 11, 388404, https://doi.org/10.1175/2009JHM1142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? J. Climate, 19, 916934, https://doi.org/10.1175/JCLI3672.1.

  • Vaittinada Ayar, P., M. Vrac, S. Bastin, J. Carreau, M. Déqué, and C. Gallardo, 2016: Intercomparison of statistical and dynamical downscaling models under the EURO- and MED-CORDEX initiative framework: Present climate evaluations. Climate Dyn., 46, 13011329, https://doi.org/10.1007/s00382-015-2647-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrac, M., and P. Naveau, 2007: Stochastic downscaling of precipitation: From dry events to heavy rainfalls. Water Resour. Res., 43, W07402, https://doi.org/10.1029/2006WR005308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Way, R. G., F. Oliva, and A. E. Viau, 2017: Underestimated warming of northern Canada in the Berkeley Earth temperature product. Int. J. Climatol., 37, 17461757, https://doi.org/10.1002/joc.4808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheater, H. S., and Coauthors, 2005: Spatial-temporal rainfall modelling for flood risk estimation. Stochastic Environ. Res. Risk Assess., 19, 403416, https://doi.org/10.1007/s00477-005-0011-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijngaard, J. B., A. M. G. Klein Tank, and G. P. Können, 2003: Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol., 23, 679692, https://doi.org/10.1002/joc.906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, G., D. Maraun, M. Vrac, M. Widmann, J. M. Eden, and T. Kent, 2014: Stochastic model output statistics for bias correcting and downscaling precipitation including extremes. J. Climate, 27, 69406959, https://doi.org/10.1175/JCLI-D-13-00604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yee, T. W., 2016: VGAM: Vector generalized linear and additive models: R package version 1.0-3. Comprehensive R Archive Network, http://CRAN.R-project.org/package=VGAM.

  • Yee, T. W., and C. J. Wild, 1996: Vector generalized additive models. J. Roy. Stat. Soc., 58B, 481493.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 767 211 12
PDF Downloads 333 39 6