Radar-Observed Bulk Microphysics of Midlatitude Leading-Line Trailing-Stratiform Mesoscale Convective Systems

Shawn L. Handler School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Shawn L. Handler in
Current site
Google Scholar
PubMed
Close
and
Cameron R. Homeyer School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Cameron R. Homeyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In 2013, all NEXRAD WSR-88D units in the United States were upgraded to dual polarization. Dual polarization allows for the identification of precipitation particle shape, size, orientation, and concentration. In this study, dual-polarization NEXRAD observations from 34 recent events are used to identify the bulk microphysical characteristics of a specific subset of mesoscale convective systems (MCSs), the leading-line trailing-stratiform (LLTS) MCS. NEXRAD observations are used to examine hydrometeor distributions in relative altitude to the 0°C level and as a function of storm life cycle, precipitation source (convective or stratiform), and storm environment. The analysis reveals that graupel particles are the most frequently classified hydrometeor class in a layer extending from the 0°C-level altitude to approximately 5 km above within the convective region. Below the 0°C level, rain is the most frequently classified hydrometeor, with small hail and graupel concentrations present throughout the LLTS system’s life cycle. The stratiform precipitation region contains small graupel concentrations in a shallow layer above the 0°C level, with pristine ice crystals being classified as the most frequently observed hydrometeor at higher altitudes and snow aggregates being classified as the most frequently observed hydrometeor at lower altitudes above the environmental 0°C level. Variations in most unstable convective available potential energy (MUCAPE) have the largest impact on the vertical distribution of hydrometeors, because more-unstable environments are characterized by a greater production of rimed ice.

Current affiliation: Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shawn Handler, shawn.handler@noaa.gov

Abstract

In 2013, all NEXRAD WSR-88D units in the United States were upgraded to dual polarization. Dual polarization allows for the identification of precipitation particle shape, size, orientation, and concentration. In this study, dual-polarization NEXRAD observations from 34 recent events are used to identify the bulk microphysical characteristics of a specific subset of mesoscale convective systems (MCSs), the leading-line trailing-stratiform (LLTS) MCS. NEXRAD observations are used to examine hydrometeor distributions in relative altitude to the 0°C level and as a function of storm life cycle, precipitation source (convective or stratiform), and storm environment. The analysis reveals that graupel particles are the most frequently classified hydrometeor class in a layer extending from the 0°C-level altitude to approximately 5 km above within the convective region. Below the 0°C level, rain is the most frequently classified hydrometeor, with small hail and graupel concentrations present throughout the LLTS system’s life cycle. The stratiform precipitation region contains small graupel concentrations in a shallow layer above the 0°C level, with pristine ice crystals being classified as the most frequently observed hydrometeor at higher altitudes and snow aggregates being classified as the most frequently observed hydrometeor at lower altitudes above the environmental 0°C level. Variations in most unstable convective available potential energy (MUCAPE) have the largest impact on the vertical distribution of hydrometeors, because more-unstable environments are characterized by a greater production of rimed ice.

Current affiliation: Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shawn Handler, shawn.handler@noaa.gov
Save
  • Andric, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, https://doi.org/10.1175/JAMC-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, P. M., and A. C. Bemis, 1950: A quantitative study of the bright band in radar precipitation echoes. J. Meteor., 7, 145151, https://doi.org/10.1175/1520-0469(1950)007<0145:AQSOTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bader, M., S. Clough, and G. Cox, 1987: Aircraft and dual polarization radar observations of hydrometeors in light stratiform precipitation. Quart. J. Roy. Meteor. Soc., 113, 491515, https://doi.org/10.1002/qj.49711347605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, H., and R. Houze Jr., 2014: Precipitation hydrometeor type relative to the mesoscale airflow in mature oceanic deep convection of the Madden–Julian oscillation. J. Geophys. Res. Atmos., 119, 13 99014 014, https://doi.org/10.1002/2014JD022241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M., and R. Houze Jr., 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 30343065, https://doi.org/10.1175/1520-0493(1991)119<3034:KAPSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouniol, D., J. Delanoë, C. Duroure, A. Protat, V. Giraud, and G. Penide, 2010: Microphysical characterisation of West African MCS anvils. Quart. J. Roy. Meteor. Soc., 136 (S1), 323344, https://doi.org/10.1002/qj.557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E., J. Vivekanandan, J. Tuttle, and C. Kessinger, 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev., 123, 31293143, https://doi.org/10.1175/1520-0493(1995)123<3129:ASOTMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caylor, I., and A. Illingworth, 1987: Radar observations and modelling of warm rain initiation. Quart. J. Roy. Meteor. Soc., 113, 11711191, https://doi.org/10.1002/qj.49711347806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunning, J. B., 1986: The Oklahoma–Kansas Preliminary Regional Experiment for STORM-Central. Bull. Amer. Meteor. Soc., 67, 14781486, https://doi.org/10.1175/1520-0477(1986)067<1478:TOKPRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 10751093, https://doi.org/10.1175/BAMS-85-8-1075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Dover Publications, 562 pp.

  • Evaristo, R., G. Scialom, N. Viltard, and Y. Lemaître, 2010: Polarimetric signatures and hydrometeor classification of West African squall lines. Quart. J. Roy. Meteor. Soc., 136 (S1), 272288, https://doi.org/10.1002/qj.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, https://doi.org/10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., 2002: Upstream influence of numerically simulated squall-line storms. Quart. J. Roy. Meteor. Soc., 128, 893912, https://doi.org/10.1256/0035900021643737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, M. P., J. W. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140, https://doi.org/10.1029/RS019i001p00132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C., 2014: Formation of the enhanced-V infrared cloud-top feature from high-resolution three-dimensional radar observations. J. Atmos. Sci., 71, 332348, https://doi.org/10.1175/JAS-D-13-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C., and M. Kumjian, 2015: Microphysical characteristics of overshooting convection from polarimetric radar observations. J. Atmos. Sci., 72, 870891, https://doi.org/10.1175/JAS-D-13-0388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461, https://doi.org/10.1002/qj.49711548702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Houze, R. A., Jr., M. Rutledge, M. Biggerstaff, and B. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608619, https://doi.org/10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., B. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613654, https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J., V. Bringi, L. Carey, and S. Bolen, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749775, https://doi.org/10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M., and Coauthors, 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T., and R. Carbone, 1992: A preliminary morphology of precipitation systems in tropical northern Australia. Quart. J. Roy. Meteor. Soc., 118, 283326, https://doi.org/10.1002/qj.49711850406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications. J. Oper. Meteor., 1, 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013c: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265274, https://doi.org/10.15191/nwajom.2013.0121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66, 667685, https://doi.org/10.1175/2008JAS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, https://doi.org/10.1175/JAS-D-11-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. M. Ganson, and A. V. Ryzhkov, 2012: Raindrop freezing in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci., 69, 34713490, https://doi.org/10.1175/JAS-D-12-067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux. J. Atmos. Sci., 37, 24442457, https://doi.org/10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., E. J. Zipser, and S. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 34933518, https://doi.org/10.1175/1520-0469(1998)055<3493:TROESA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loney, M. L., D. S. Zrnić, J. M. Straka, and A. V. Ryzhkov, 2002: Enhanced polarimetric radar signatures above the melting level in a supercell storm. J. Appl. Meteor., 41, 11791194, https://doi.org/10.1175/1520-0450(2002)041<1179:EPRSAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEP, 2005: NCEP North American Regional Reanalysis (NARR). Research Data Archive, Computational and Information Systems Laboratory, National Center for Atmospheric Research, accessed March–August 2016, http://rda.ucar.edu/datasets/ds608.0/.

  • NOAA/NWS/ROC, 1991: NOAA Next Generation Radar (NEXRAD) level II base data. NOAA/National Centers for Environmental Information, accessed August–November 2015, https://doi.org/10.7289/V5W9574V.

    • Crossref
    • Export Citation
  • Ortega, K. L., J. M. Krause, and A. V. Ryzhkov, 2016: Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteor. Climatol., 55, 829848, https://doi.org/10.1175/JAMC-D-15-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., and D. R. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53, 29242951, https://doi.org/10.1175/1520-0469(1996)053<2924:TIOCGT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H., A. Ryzhkov, D. Zrnić, and K. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M., and R. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part III: Investigation of the role of shed drops as hail embryos in the 1 August CCOPE severe storm. J. Atmos. Sci., 44, 27832803, https://doi.org/10.1175/1520-0469(1987)044<2783:MASOGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, A., and R. Houze Jr., 2014: Microphysical characteristics of MJO convection over the Indian Ocean during DYNAMO. J. Geophys. Res. Atmos., 119, 25432554, https://doi.org/10.1002/2013JD020799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744, https://doi.org/10.1175/JTECH2003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, https://doi.org/10.1175/JAMC-D-13-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, J. M., and W. R. Cotton, 1990: Interactions between upper and lower tropospheric gravity waves on squall line structure and maintenance. J. Atmos. Sci., 47, 12051222, https://doi.org/10.1175/1520-0469(1990)047<1205:IBUALT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seliga, T., and V. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seliga, T., and V. Bringi, 1978: Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Sci., 13, 271275, https://doi.org/10.1029/RS013i002p00271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P., D. Musil, A. Detwiler, and R. Ramachandran, 1999: Observations of mixed-phase precipitation within a CaPE thunderstorm. J. Appl. Meteor., 38, 145155, https://doi.org/10.1175/1520-0450(1999)038<0145:OOMPPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smull, B. F., and R. A. Houze Jr., 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113, 117133, https://doi.org/10.1175/1520-0493(1985)113<0117:AMSLWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smull, B. F., and R. A. Houze Jr., 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 28692889, https://doi.org/10.1175/1520-0493(1987)115<2869:RIISLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Starzec, M., C. R. Homeyer, and G. L. Mullendore, 2017: Storm labeling in 3 dimensions (SL3D): A volumetric radar echo and dual-polarization updraft classification algorithm. Mon. Wea. Rev., 145, 11271145, https://doi.org/10.1175/MWR-D-16-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J., D. Zrnić, and A. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trömel, S., M. R. Kumjian, A. V. Ryzhkov, C. Simmer, and M. Diederich, 2013: Backscatter differential phase—Estimation and variability. J. Appl. Meteor. Climatol., 52, 25292548, https://doi.org/10.1175/JAMC-D-13-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trömel, S., A. V. Ryzhkov, P. Zhang, and C. Simmer, 2014: Investigations of backscatter differential phase in the melting layer. J. Appl. Meteor. Climatol., 53, 23442359, https://doi.org/10.1175/JAMC-D-14-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., S. Ellis, R. Oye, D. Zrnić, A. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 19902013, https://doi.org/10.1175/1520-0469(1988)045<1990:SAEONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., C. Langston, and K. Howard, 2008: Brightband identification based on vertical profiles of reflectivity from the WSR-88D. J. Atmos. Oceanic Technol., 25, 18591872, https://doi.org/10.1175/2008JTECHA1039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799814, https://doi.org/10.1175/1520-0450(1969)008<0799:TROOUC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, https://doi.org/10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci., 37, 24582469, https://doi.org/10.1175/1520-0469(1980)037<2458:CVVEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D., N. Balakrishnan, C. Ziegler, V. Bringi, K. Aydin, and T. Matejka, 1993: Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor., 32, 678693, https://doi.org/10.1175/1520-0450(1993)032<0678:PSITSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 396 128 9
PDF Downloads 423 96 3