Selecting Time Series Length to Moderate the Impact of Nonstationarity in Extreme Rainfall Analyses

Arthur T. DeGaetano Northeast Regional Climate Center, Department of Earth and Atmospheric Science, Cornell University, Ithaca, New York

Search for other papers by Arthur T. DeGaetano in
Current site
Google Scholar
PubMed
Close
and
Christopher Castellano Northeast Regional Climate Center, Department of Earth and Atmospheric Science, Cornell University, Ithaca, New York

Search for other papers by Christopher Castellano in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observed and projected increases in the frequency of extreme rainfall complicate the extreme value analyses of precipitation that are used to guide engineering design specifications, because conventional methods assume stationarity. Uncertainty in the magnitude of the trend in future years precludes directly accounting for the trend in these analyses. While previous extreme value analyses have sought to use as long a record as possible, it is shown using stochastically generated time series that this practice exacerbates the potential error introduced by long-term trends. For extreme precipitation series characterized by a trend in the location parameter exceeding approximately 0.005% yr−1, limiting the record length to fewer than 70 years is recommended. The use of longer time periods results in partial-duration series that are significantly different from their stationary counterparts and a greater percentage of rainfall extremes that exceed the 90% confidence interval corresponding to a stationary distribution. The effect is most pronounced on the shortest (i.e., 2 yr) recurrence intervals and generally becomes undetectable for recurrence intervals of more than 25 years. The analyses also indicate that the practice of including stations with records of limited length that end several decades prior to the present should be avoided. Distributions having a stationary location parameter but trended scale parameter do not exhibit this behavior.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Art DeGaetano, atd2@cornell.edu

Abstract

Observed and projected increases in the frequency of extreme rainfall complicate the extreme value analyses of precipitation that are used to guide engineering design specifications, because conventional methods assume stationarity. Uncertainty in the magnitude of the trend in future years precludes directly accounting for the trend in these analyses. While previous extreme value analyses have sought to use as long a record as possible, it is shown using stochastically generated time series that this practice exacerbates the potential error introduced by long-term trends. For extreme precipitation series characterized by a trend in the location parameter exceeding approximately 0.005% yr−1, limiting the record length to fewer than 70 years is recommended. The use of longer time periods results in partial-duration series that are significantly different from their stationary counterparts and a greater percentage of rainfall extremes that exceed the 90% confidence interval corresponding to a stationary distribution. The effect is most pronounced on the shortest (i.e., 2 yr) recurrence intervals and generally becomes undetectable for recurrence intervals of more than 25 years. The analyses also indicate that the practice of including stations with records of limited length that end several decades prior to the present should be avoided. Distributions having a stationary location parameter but trended scale parameter do not exhibit this behavior.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Art DeGaetano, atd2@cornell.edu
Save
  • ASCE, 2006: Standard Guidelines for the Design (45-05), Installation (46-05), and Operation and Maintenance (47-05) of Urban Stormwater Systems. American Society of Civil Engineers, 120 pp., https://doi.org/10.1061/9780784408063.

    • Crossref
    • Export Citation
  • Bonnin, G. M., D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley, 2006: Precipitation-frequency atlas of the United States. Vol. 2, NOAA Atlas 14, 65 pp. + appendixes, http://www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume2.pdf.

  • Chen, Y. R., and P.-S. Chu, 2014: Trends in precipitation extremes and return levels in the Hawaiian Islands under a changing climate. Int. J. Climatol., 34, 39133925, https://doi.org/10.1002/joc.3950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., A. AghaKouchak, E. Gilleland, and R. W. Katz, 2014: Non-stationary extreme value analysis in a changing climate. Climatic Change, 127, 353369, https://doi.org/10.1007/s10584-014-1254-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., 2009: Time-dependent changes in extreme-precipitation return-period amounts in the continental United States. J. Appl. Meteor. Climatol., 48, 20862099, https://doi.org/10.1175/2009JAMC2179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., and C. M. Castellano, 2017: Future projections of extreme precipitation intensity-duration-frequency curves for climate adaptation planning in New York State. Climate Serv., 5, 2335, https://doi.org/10.1016/j.cliser.2017.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., W. Noon, and K. L. Eggleston, 2015: Efficient access to climate products using ACIS web services. Bull. Amer. Meteor. Soc., 96, 173180, https://doi.org/10.1175/BAMS-D-13-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O’Gorman, and N. Maher, 2016: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508, https://doi.org/10.1038/nclimate2941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, E. M., and A. P. Barros, 2003: Probable maximum precipitation estimation using multifractals: Application in the eastern United States. J. Hydrometeor., 4, 10121024, https://doi.org/10.1175/1525-7541(2003)004<1012:PMPEUM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, and T. R. Karl, 2012: Changes in intense precipitation over the central United States. J. Hydrometeor., 13, 4766, https://doi.org/10.1175/JHM-D-11-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hailegeorgis, T. T., and K. Alfredsen, 2017: Analyses of extreme precipitation and runoff events including uncertainties and reliability in design and management of urban water infrastructure. J. Hydrol., 544, 290305, https://doi.org/10.1016/j.jhydrol.2016.11.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heineman, M., 2012: Trends in precipitation maxima at U.S. Historical Climatology Network stations 1893–2010. Proc. World Environmental and Water Resources Congress 2012: Crossing Boundaries, American Society of Civil Engineers, 2003–2012, https://doi.org/10.1061/9780784412312.201.

    • Crossref
    • Export Citation
  • Hershfield, D. M., 1961: Rainfall frequency atlas of the United States. U.S. Weather Bureau Tech. Paper 40, 65 pp., http://www.nws.noaa.gov/oh/hdsc/PF_documents/TechnicalPaper_No40.pdf.

  • Hershfield, D. M., 1965: Method for estimating probable maximum rainfall. J. Amer. Water Works Assoc., 57, 965972, https://doi.org/10.1002/j.1551-8833.1965.tb01486.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, W. D., D. A. Carr, and B. Routledge, 1989: Rainfall intensity–duration frequency values for Canadian locations. Atmospheric Environment Service Rep. CLI-1-89, 17 pp.

  • Hosking, J. R. M., 1990: L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. Roy. Meteor. Soc., 52, 105124.

    • Search Google Scholar
    • Export Citation
  • Huff, F. A., and J. R. Angel, 1992: Rainfall frequency atlas of the Midwest. Illinois State Water Survey Bull. 71, 148 pp., https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs141p2_024033.pdf.

  • IPCC, 2014: Climate Change 2014: Synthesis Report. R. K. Pachauri and L. A. Meyer, Eds., Cambridge University Press, 151 pp., https://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full.pdf.

  • Katz, R. W., M. B. Parlange, and P. Naveau, 2002: Statistics of extremes in hydrology. Adv. Water Resour., 25, 12871304, https://doi.org/10.1016/S0309-1708(02)00056-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and F. Zwiers, 2005: Estimating extremes in transient climate change simulations. J. Climate, 18, 11561173, https://doi.org/10.1175/JCLI3320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., 2003: North American trends in extreme precipitation. Nat. Hazards, 29, 291305, https://doi.org/10.1023/A:1023694115864.

  • Kunkel, K. E., K. Andsager, and D. R. Easterling, 1999: Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Climate, 12, 25152527, https://doi.org/10.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ning, L., E. E. Riddle, and R. S. Bradley, 2015: Projected changes in climate extremes over the northeastern United States. J. Climate, 28, 32893310, https://doi.org/10.1175/JCLI-D-14-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papalexiou, S. M., and D. Koutsoyiannis, 2013: Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resour. Res., 49, 187201, https://doi.org/10.1029/2012WR012557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedron, I. T., M. A. Silva-Dias, S. de Paula Dias, L. Carvalho, and E. D. Freitas, 2017: Trends and variability in extremes of precipitation in Curitiba—southern Brazil. Int. J. Climatol., 37, 12501264, https://doi.org/10.1002/joc.4773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perica, S., and Coauthors, 2013: Precipitation-frequency atlas of the United States. Vol. 9, NOAA Atlas 14, 36 pp. + appendixes, http://www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume9.pdf.

  • Rodríguez, R., X. Navarro, M. C. Casas, J. Ribalaygua, B. Russo, L. Pouget, and A. Redaño, 2014: Influence of climate change on IDF curves for the metropolitan area of Barcelona (Spain). Int. J. Climatol., 34, 643654, https://doi.org/10.1002/joc.3712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholz, F. W., and M. A. Stephens, 1987: K-sample Anderson-Darling tests. J. Amer. Stat. Assoc., 82, 918924.

  • Silva Dias, M. A. F., J. Dias, L. M. V. Carvalho, E. D. Freitas, and P. L. Dias, 2013: Changes in extreme daily rainfall for São Paulo, Brazil. Climatic Change, 116, 705722, https://doi.org/10.1007/s10584-012-0504-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, and Q. Duan, 2016: Extreme climate events and agricultural climate indices in China: CMIP5 model evaluation and projections. Int. J. Climatol., 36, 4361, https://doi.org/10.1002/joc.4328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Besselaar, E. J. M., A. M. G. Klein Tank, and T. A. Buishand, 2013: Trends in European precipitation extremes over 1951–2010. Int. J. Climatol., 33, 26822689, https://doi.org/10.1002/joc.3619.

    • Search Google Scholar
    • Export Citation
  • van der Pol, T. D., E. C. van Ierland, S. Gabbert, H. P. Weikard, and E. M. T. Hendrix, 2015: Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change. J. Environ. Manage., 154, 4047, https://doi.org/10.1016/j.jenvman.2015.02.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., G. Huang, J. Liu, Z. Li, and S. Zhao, 2015: Ensemble projections of regional climatic changes over Ontario, Canada. J. Climate, 28, 73277346, https://doi.org/10.1175/JCLI-D-15-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., and R. P. Cember, 1993: Atlas of precipitation extremes for the northeastern United States and southeastern Canada. Northeast Regional Climate Center Research Publ. RR 93-5, 40 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 433 116 6
PDF Downloads 437 93 4