A Climatology of Extreme South American Andean Cold Surges

Kevin C. Prince Atmospheric Science Program, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by Kevin C. Prince in
Current site
Google Scholar
PubMed
Close
and
Clark Evans Atmospheric Science Program, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by Clark Evans in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cold surges represent one of several phenomena by which midlatitude features can modulate the atmosphere, both dynamically and thermodynamically, deep into the tropics. This study involves the construction of a climatology of the strongest South American cold surges that follow along the Andes Mountains to quantify the extent to which these surges modulate the atmosphere from the midlatitudes to the tropics. Cold surges occurring during June–September (austral winter) from 1980 to 2017 are considered. In this study, cold-surge events are identified using standardized anomalies of 925-hPa meridional wind and 925-hPa temperature. As compared with previous cold-surge investigations, the use of standardized anomalies better enables spatial variation in cold-surge intensity and impacts to be quantified. A strong cold surge is defined as one in which the 925-hPa temperature is at least 3 standardized anomalies below 0 and the 925-hPa meridional wind is at least 3 standardized anomalies above 0 on the meso-α scale or larger. Using these criteria, 67 events are identified. The composite cold surge is characterized by highly anomalous cold, southerly flow that originates in northern Argentina and progresses northward, significantly modulating lower-tropospheric kinematic and thermodynamic fields across the entire Amazon basin over a period of 2 to as many as 8 days.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Clark Evans, evans36@uwm.edu

Abstract

Cold surges represent one of several phenomena by which midlatitude features can modulate the atmosphere, both dynamically and thermodynamically, deep into the tropics. This study involves the construction of a climatology of the strongest South American cold surges that follow along the Andes Mountains to quantify the extent to which these surges modulate the atmosphere from the midlatitudes to the tropics. Cold surges occurring during June–September (austral winter) from 1980 to 2017 are considered. In this study, cold-surge events are identified using standardized anomalies of 925-hPa meridional wind and 925-hPa temperature. As compared with previous cold-surge investigations, the use of standardized anomalies better enables spatial variation in cold-surge intensity and impacts to be quantified. A strong cold surge is defined as one in which the 925-hPa temperature is at least 3 standardized anomalies below 0 and the 925-hPa meridional wind is at least 3 standardized anomalies above 0 on the meso-α scale or larger. Using these criteria, 67 events are identified. The composite cold surge is characterized by highly anomalous cold, southerly flow that originates in northern Argentina and progresses northward, significantly modulating lower-tropospheric kinematic and thermodynamic fields across the entire Amazon basin over a period of 2 to as many as 8 days.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Clark Evans, evans36@uwm.edu
Save
  • Chang, C.-P., and K. M. W. Lau, 1980: Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974. Part II: Planetary-scale aspects. Mon. Wea. Rev., 108, 298312, https://doi.org/10.1175/1520-0493(1980)108<0298:NCSANE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. Mass, 1995: The structure evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123, 25772610, https://doi.org/10.1175/1520-0493(1995)123<2577:TSAEOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crossett, C., and N. Metz, 2017: A climatological study of extreme cold surges along the African highlands. J. Appl. Meteor. Climatol., 56, 17311738, https://doi.org/10.1175/JAMC-D-15-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doty, B., and J. L. Kinter III, 1992: The Grid Analysis and Display System (GrADS): A practical tool for Earth science visualization. Preprints, Eighth Int. Conf. on Interactive Information and Processing Systems, Atlanta, GA, Amer. Meteor. Soc., 115–116.

  • Garreaud, R., 2000: Cold air incursions over subtropical South America: mean structure and dynamics. Mon. Wea. Rev., 128, 25442559, https://doi.org/10.1175/1520-0493(2000)128<2544:CAIOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, K. S., 2012: Large-scale influences on the pre-genesis of tropical cyclone Karl (2010). M.S. thesis, Dept. of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 108 pp.

  • Grumm, R. H., and R. Hart, 2001: Standardized anomalies applied to significant cold season weather events: Preliminary findings. Wea. Forecasting, 16, 736754, https://doi.org/10.1175/1520-0434(2001)016<0736:SAATSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and R. H. Grumm, 2001: Using normalized climatological anomalies to rank synoptic-scale events objectively. Mon. Wea. Rev., 129, 24262442, https://doi.org/10.1175/1520-0493(2001)129<2426:UNCATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H. H., 1987: Propagation of low-level circulation features in the vicinity of mountain ranges. Mon. Wea. Rev., 115, 18641891, https://doi.org/10.1175/1520-0493(1987)115<1864:POLLCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junker, N. W., M. J. Brennan, F. Pereira, M. J. Bodner, and R. H. Grumm, 2009: Assessing the potential for rare precipitation events with standardized anomalies and ensemble guidance at the Hydrometeorological Prediction Center. Bull. Amer. Meteor. Soc., 90, 445453, https://doi.org/10.1175/2008BAMS2636.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathers, D. L., 1986: Edge wave characteristics of East Asian cold surges. M.S. thesis, Dept. of Meteorology, The Pennsylvania State University, 108 pp.

  • Lee, H.-T., 2014: Climate algorithm theoretical basis document (C-ATBD): Outgoing longwave radiation (OLR)—Daily. NOAA Climate Data Record (CDR) Program Doc. CDRP-ATBD-0526, 46 pp. http://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Outgoing%20Longwave%20Radiation%20-%20Daily/AlgorithmDescription.pdf.

  • Li, W., and R. Fu, 2006: Influence of cold air intrusions on the wet season onset over Amazonia. J. Climate, 19, 257275, https://doi.org/10.1175/JCLI3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., G. N. Kiladis, L. M. V. Carvalho, C. Jones, C. S. Vera, I. Blade, and D. Allured, 2009: Origin of convectively coupled Kelvin waves over South America. J. Climate, 22, 300315, https://doi.org/10.1175/2008JCLI2340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lupo, A. R., J. J. Nocera, L. F. Bosart, E. G. Hoffman, and D. J. Knight, 2001: South American cold surges: Types, composites and case studies. Mon. Wea. Rev., 129, 10211041, https://doi.org/10.1175/1520-0493(2001)129<1021:SACSTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and M. D. Albright, 1987: Coastal southerlies and alongshore surges of the west coast of North America: Evidence of mesoscale topographically trapped response to synoptic forcing. Mon. Wea. Rev., 115, 17071738, https://doi.org/10.1175/1520-0493(1987)115<1707:CSAASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MathWorks, 2018: MATLAB: Global Optimization Toolbox User's Guide (r2018a). MathWorks Rep., 756 pp., http://www.mathworks.com/help/pdf_doc/gads/gads_tb.pdf.

  • Metz, N., H. M. Archambault, A. F. Srock, T. J. Galarneau Jr., and L. Bosart, 2013: A comparison of South American and African preferential pathways for extreme cold events. Mon. Wea. Rev., 141, 20662086, https://doi.org/10.1175/MWR-D-12-00202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, G. V., and G. J. Berri, 2007: Atmospheric circulation associated with persistent generalized frosts in central-southern South America. Mon. Wea. Rev., 135, 12681289, https://doi.org/10.1175/MWR3344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., and T. Ambrizzi, 2005: Dynamical conditions and synoptic tracks associated with different types of cold surge over tropical South America. Int. J. Climatol., 25, 215241, https://doi.org/10.1002/joc.1080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., O. Martius, and J. Arnold, 2013: Cold surge episodes over southeastern Brazil—A potential vorticity perspective. Int. J. Climatol., 33, 27582767, https://doi.org/10.1002/joc.3618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tilley, J. S., 1990: On the application of edge wave theory to terrain-bounded cold surges: A numerical study. Ph.D thesis, The Pennsylvania State University, 353 pp.

  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677, https://doi.org/10.1175/2007MWR2132.1.

  • Vera, C., P. K. Vigliarolo, and E. H. Berbery, 2002: Cold season synoptic-scale waves over subtropical South America. Mon. Wea. Rev., 130, 684699, https://doi.org/10.1175/1520-0493(2002)130<0684:CSSSWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and R. Fu, 2004: Influence of cross-Andes flow on the South American low-level jet. J. Climate, 17, 12471262, https://doi.org/10.1175/1520-0442(2004)017<1247:IOCFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014: An intensity index for the East Asian winter monsoon. J. Climate, 27, 23612374, https://doi.org/10.1175/JCLI-D-13-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 631 153 16
PDF Downloads 589 102 8