Radar-Derived Structural and Precipitation Characteristics of ZDR Columns within Warm-Season Convection over the United Kingdom

David M. Plummer Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by David M. Plummer in
Current site
Google Scholar
PubMed
Close
,
Jeffrey R. French Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Jeffrey R. French in
Current site
Google Scholar
PubMed
Close
,
David C. Leon Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by David C. Leon in
Current site
Google Scholar
PubMed
Close
,
Alan M. Blyth National Centre for Atmospheric Science, Institute of Climate and Atmospheric Science, University of Leeds, Leeds, United Kingdom
School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Alan M. Blyth in
Current site
Google Scholar
PubMed
Close
,
Sonia Lasher-Trapp Department of Atmospheric Sciences, University of Illinois, Urbana-Champaign, Illinois

Search for other papers by Sonia Lasher-Trapp in
Current site
Google Scholar
PubMed
Close
,
Lindsay J. Bennett National Centre for Atmospheric Science, Institute of Climate and Atmospheric Science, University of Leeds, Leeds, United Kingdom
School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Lindsay J. Bennett in
Current site
Google Scholar
PubMed
Close
,
David R. L. Dufton National Centre for Atmospheric Science, Institute of Climate and Atmospheric Science, University of Leeds, Leeds, United Kingdom
School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by David R. L. Dufton in
Current site
Google Scholar
PubMed
Close
,
Robert C. Jackson Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Robert C. Jackson in
Current site
Google Scholar
PubMed
Close
, and
Ryan R. Neely National Centre for Atmospheric Science, Institute of Climate and Atmospheric Science, University of Leeds, Leeds, United Kingdom
School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Ryan R. Neely in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Analyses of the radar-observed structure and derived rainfall statistics of warm-season convection developing columns of enhanced positive differential reflectivity ZDR over England’s southwest peninsula are presented here. Previous observations of ZDR columns in developing cumulonimbus clouds over England were rare. The observations presented herein suggest otherwise, at least in the southwesterly winds over the peninsula. The results are the most extensive of their kind in the United Kingdom; the data were collected using the National Centre for Atmospheric Science dual-polarization X-band radar (NXPol) during the Convective Precipitation Experiment (COPE). In contrast to recent studies of ZDR columns focused on deep clouds that developed in high-instability environments, the COPE measurements show relatively frequent ZDR columns in shallower clouds, many only 4–5 km deep. The presence of ZDR columns is used to infer that an active warm rain process has contributed to precipitation evolution in convection deep enough for liquid and ice growth to take place. Clouds with ZDR columns were identified objectively in three COPE deployments, with both discrete convection and clouds embedded in larger convective complexes developing columns. Positive ZDR values typically extended to 1–1.25 km above 0°C in the columns, with ZDR ≥ 1 dB sometimes extending nearly 4 km above 0°C. Values above 3 dB typically occurred in the lowest 500 m above 0°C, with coincident airborne measurements confirming the presence of supercooled raindrops. Statistical analyses indicated that the convection that produced ZDR columns was consistently associated with the larger derived rainfall rates when compared with the overall convective population sampled by the NXPol during COPE.

Current affiliation: Alpenglow Instruments, LLC, Laramie, Wyoming.

Current affiliation: Argonne National Laboratory, Argonne, Illinois.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David Plummer, dplumme1@uwyo.edu

Abstract

Analyses of the radar-observed structure and derived rainfall statistics of warm-season convection developing columns of enhanced positive differential reflectivity ZDR over England’s southwest peninsula are presented here. Previous observations of ZDR columns in developing cumulonimbus clouds over England were rare. The observations presented herein suggest otherwise, at least in the southwesterly winds over the peninsula. The results are the most extensive of their kind in the United Kingdom; the data were collected using the National Centre for Atmospheric Science dual-polarization X-band radar (NXPol) during the Convective Precipitation Experiment (COPE). In contrast to recent studies of ZDR columns focused on deep clouds that developed in high-instability environments, the COPE measurements show relatively frequent ZDR columns in shallower clouds, many only 4–5 km deep. The presence of ZDR columns is used to infer that an active warm rain process has contributed to precipitation evolution in convection deep enough for liquid and ice growth to take place. Clouds with ZDR columns were identified objectively in three COPE deployments, with both discrete convection and clouds embedded in larger convective complexes developing columns. Positive ZDR values typically extended to 1–1.25 km above 0°C in the columns, with ZDR ≥ 1 dB sometimes extending nearly 4 km above 0°C. Values above 3 dB typically occurred in the lowest 500 m above 0°C, with coincident airborne measurements confirming the presence of supercooled raindrops. Statistical analyses indicated that the convection that produced ZDR columns was consistently associated with the larger derived rainfall rates when compared with the overall convective population sampled by the NXPol during COPE.

Current affiliation: Alpenglow Instruments, LLC, Laramie, Wyoming.

Current affiliation: Argonne National Laboratory, Argonne, Illinois.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David Plummer, dplumme1@uwyo.edu
Save
  • Adachi, A., T. Kobayashi, H. Yamauchi, and S. Onogi, 2013: Detection of potentially hazardous convective clouds with a dual-polarized C-band radar. Atmos. Meas. Tech., 6, 27412760, https://doi.org/10.5194/amt-6-2741-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., D. B. Johnson, and D. Baumgardner, 1986: Aircraft observations of large raindrops in warm, shallow, convective clouds. Geophys. Res. Lett., 13, 991994, https://doi.org/10.1029/GL013i010p00991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, L., 2017: MICROSCOPE: NCAS mobile X-band radar scan data from Davidstow Airfield. NCAS British Atmospheric Data Centre, accessed 12 May 2017, https://doi.org/10.5072/4bb383b7d6ca421bbedd57b8097d5664.

    • Crossref
    • Export Citation
  • Blyth, A. M., and J. Latham, 1993: Development of ice and precipitation in New Mexican summertime cumulus clouds. Quart. J. Roy. Meteor. Soc., 119, 91120, https://doi.org/10.1002/qj.49711950905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., R. E. Benestad, P. R. Krehbiel, and J. Latham, 1997: Observations of supercooled raindrops in New Mexico summertime cumuli. J. Atmos. Sci., 54, 569575, https://doi.org/10.1175/1520-0469(1997)054<0569:OOSRIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., J. H. Lowenstein, Y. Huang, Z. Cui, S. Davies, and K. S. Carslaw, 2013: The production of warm rain in shallow maritime cumulus clouds. Quart. J. Roy. Meteor. Soc., 139, 2031, https://doi.org/10.1002/qj.1972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R., Jr., 1964: What is the role of ice in summer rain-showers? J. Atmos. Sci., 21, 640645, https://doi.org/10.1175/1520-0469(1964)021<0640:WITROI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R., Jr., 1968: Meteorological bases for precipitation development. Bull. Amer. Meteor. Soc., 49, 343353, https://doi.org/10.1175/1520-0477-49.4.343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., J. Vivekanandan, J. D. Tuttle, and C. J. Kessinger, 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev., 123, 31293143, https://doi.org/10.1175/1520-0493(1995)123<3129:ASOTMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., D. A. Burrows, and S. M. Menon, 1991: Multiparameter radar and aircraft study of raindrop spectral evolution in warm-based clouds. J. Appl. Meteor., 30, 853880, https://doi.org/10.1175/1520-0450(1991)030<0853:MRAASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., L. Liu, P. C. Kennedy, V. Chandrasekar, and S. A. Rutledge, 1996: Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study. Meteor. Atmos. Phys., 59, 331, https://doi.org/10.1007/BF01031999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., K. Knupp, A. Detwiler, L. Liu, I. J. Caylor, and R. A. Black, 1997: Evolution of Florida thunderstorms during the Convection and Precipitation Electrification Experiment: The case of 9 August 1991. Mon. Wea. Rev., 125, 21312160, https://doi.org/10.1175/1520-0493(1997)125<2131:EOAFTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and H. A. Swann, 1997: Evaluation of key microphysical parameters in three-dimensional cloud-model simulations using aircraft and multiparameter radar data. Quart. J. Roy. Meteor. Soc., 123, 22452275, https://doi.org/10.1002/qj.49712354406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255, https://doi.org/10.1175/2008JAMC1732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, N., P. E. Kirstetter, J. J. Gourley, and Y. Hong, 2017: Polarimetric signatures of midlatitude warm-rain precipitation events. J. Appl. Meteor. Climatol., 56, 697711, https://doi.org/10.1175/JAMC-D-16-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caylor, I. J., and A. J. Illingworth, 1987: Radar observations and modelling of warm rain initiation. Quart. J. Roy. Meteor. Soc., 113, 11711191, https://doi.org/10.1002/qj.49711347806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., and R. P. Lawson, 1984: Physical interpretation of results from the HIPLEX-1 experiment. J. Climate Appl. Meteor., 23, 523540, https://doi.org/10.1175/1520-0450(1984)023<0523:PIORFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diederich, M., A. Ryzhkov, C. Simmer, P. Zhang, and S. Trömel, 2015: Use of specific attenuation for rainfall measurement at X-band radar wavelengths. Part II: Rainfall estimates and comparison with rain gauges. J. Hydrometeor., 16, 503516, https://doi.org/10.1175/JHM-D-14-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, https://doi.org/10.1175/2009JTECHA1208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Dufton, D. R. L., 2016: Quantifying uncertainty in radar rainfall estimates using an X-band dual polarisation weather radar. Ph.D. dissertation, University of Leeds, 207 pp., http://etheses.whiterose.ac.uk/15486/.

  • Dufton, D. R. L., and C. G. Collier, 2015: Fuzzy logic filtering of radar reflectivity to remove non-meteorological echoes using dual polarization radar moments. Atmos. Meas. Tech., 8, 39854000, https://doi.org/10.5194/amt-8-3985-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, J. R., J. H. Helsdon, A. G. Detwiler, and P. L. Smith, 1996: Microphysical and electrical evolution of a Florida thunderstorm. 1. Observations. J. Geophys. Res., 101, 18 96118 977, https://doi.org/10.1029/96JD01625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, R., and G. M. Heymsfield, 1991: Microphysical and radiative characteristics of convective clouds during COHMEX. J. Appl. Meteor., 30, 98116, https://doi.org/10.1175/1520-0450(1991)030<0098:MARCOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golding, B. W., P. Clark, and B. May, 2005: Boscastle flood: Meteorological analysis of the conditions leading to flooding on 16 August 2004. Weather, 60, 230235, https://doi.org/10.1256/wea.71.05.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., A. J. Illingworth, and P. Tabary, 2009: Absolute calibration of radar reflectivity using redundancy of the polarization observations and implied constraints on drop shapes. J. Atmos. Oceanic Technol., 26, 689703, https://doi.org/10.1175/2008JTECHA1152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140, https://doi.org/10.1029/RS019i001p00132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, https://doi.org/10.1038/249026a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J., and S. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Softw., 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651376, https://doi.org/10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 15401567, https://doi.org/10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and Coauthors, 2008: The development of ice in a cumulus cloud over southwest England. New J. Phys., 10, 105021, https://doi.org/10.0188/1367-2630/10/10/105021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469489, https://doi.org/10.0112/qj.49711347604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R., J. R. French, D. C. Leon, D. M. Plummer, S. Lasher-Trapp, A. M. Blyth, and A. Korolev, 2018: Observations of the microphysical evolution of convective clouds in southwest United Kingdom. Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-437, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A., M. Murphy, and E. Krider, 1996: Multiple-parameter radar observations of isolated Florida thunderstorms during the onset of electrification. J. Appl. Meteor., 35, 343354, https://doi.org/10.1175/1520-0450(1996)035<0343:MPROOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39, 448460, https://doi.org/10.1175/1520-0469(1982)039<0448:TROGAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. B., 1987: On the relative efficiency of coalescence and riming. J. Atmos. Sci., 44, 16711680, https://doi.org/10.1175/1520-0469(1987)044<1671:OTREOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T., and Coauthors, 2000: The Maritime Continent Thunderstorm Experiment (MCTEX): Overview and some results. Bull. Amer. Meteor. Soc., 81, 24332456, https://doi.org/10.1175/1520-0477(2000)081<2433:TMCTEM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., S. A. Rutledge, W. A. Petersen, and V. N. Bringi, 2001: Polarimetric radar observations of hail formation. J. Appl. Meteor., 40, 13471366, https://doi.org/10.1175/1520-0450(2001)040<1347:PROOHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., 2006: Very early formation of big, liquid drops revealed by ZDR in continental cumulus. J. Atmos. Sci., 63, 19391953, https://doi.org/10.1175/JAS3721.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenig, L., 1963: The glaciating behavior of small cumulonimbus clouds. J. Atmos. Sci., 20, 2947, https://doi.org/10.1175/1520-0469(1963)020<0029:TGBOSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. M. Ganson, and A. V. Ryzhkov, 2012: Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci., 69, 34713490, https://doi.org/10.1175/JAS-D-12-067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, https://doi.org/10.1175/JAMC-D-13-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leon, D. C., and Coauthors, 2016: The Convective Precipitation Experiment (COPE): Investigating the origins of heavy precipitation in the southwestern United Kingdom. Bull. Amer. Meteor. Soc., 97, 10031020, https://doi.org/10.1175/BAMS-D-14-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindley, T. T., and L. R. Lemon, 2007: Preliminary observations of weak three-body scatter spikes associated with low-end severe hail. Electron. J. Severe Storms Meteor., 2 (3), http://www.ejssm.org/ojs/index.php/ejssm/article/view/12.

    • Search Google Scholar
    • Export Citation
  • Meischner, P. F., V. N. Bringi, D. Heimann, and H. Höller, 1991: A squall line in southern Germany: Kinematics and precipitation formation as deduced by advanced polarimetric and Doppler radar measurements. Mon. Wea. Rev., 119, 678701, https://doi.org/10.1175/1520-0493(1991)119<0678:ASLISG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neely, R. R., III, and Coauthors, 2018: The NCAS mobile dual-polarisation Doppler X-band weather radar (NXPol). Atmos. Meas. Tech., https://doi.org/10.5194/amt-2018-41, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 1999: Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull. Amer. Meteor. Soc., 80, 191216, https://doi.org/10.1175/1520-0477(1999)080<0191:MAROOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picca, J. C., and A. V. Ryzhkov, 2010: Polarimetric signatures of melting hail and S and C bands: Detection and short-term forecast. 26th Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Atlanta, GA, Amer. Meteor. Soc., 10B.4, https://ams.confex.com/ams/pdfpapers/161240.pdf.

  • Picca, J. C., M. R. Kumjian, and A. V. Ryzhkov, 2010: ZDR columns as a predictive tool for hail growth and storm evolution. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 11.3, https://ams.confex.com/ams/25SLS/techprogram/paper_175750.htm.

  • Ramachandran, R., A. Detwiler, J. Helsdon Jr., P. L. Smith, and V. N. Bringi, 1996: Precipitation development and electrification in Florida thunderstorm cells during Convection and Precipitation/Electrification Project. J. Geol. Res., 101, 15991619, https://doi.org/10.1029/95JD02931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., 1967: Doppler radar investigation of Hawaiian rain. Tellus, 19, 432454, https://doi.org/10.3402/tellusa.v19i3.9812.

  • Rowe, A. K., S. A. Rutledge, and T. J. Lang, 2011: Investigation of microphysical processes occurring in isolated convection during NAME. Mon. Wea. Rev., 139, 424443, https://doi.org/10.1175/2010MWR3494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2005: Radar polarimetry at S, C, and X bands: Comparative analysis and operational implications. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 9R.3, http://ams.confex.com/ams/pdfpapers/95684.pdf.

  • Ryzhkov, A. V., M. Diederich, P. Zhang, and C. Simmer, 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Oceanic Technol., 31, 599619, https://doi.org/10.1175/JTECH-D-13-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. P. Khain, and J. Picca, 2015: A ZDR column detection algorithm to examine convective storm updrafts. Wea. Forecasting, 30, 18191844, https://doi.org/10.1175/WAF-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. E. Dye, A. R. Bansemer, A. J. Heymsfield, C. Grainger, W. Petersen, and R. Cifelli, 2002: Microphysical observations of tropical clouds. J. Appl. Meteor., 41, 97117, https://doi.org/10.1175/1520-0450(2002)041<0097:MOOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szumowski, M. J., R. M. Rauber, H. T. Ochs III, and L. J. Miller, 1997: The microphysical structure and evolution of Hawaiian rainband clouds. Part I: Radar observations of rainbands containing high reflectivity cores. J. Atmos. Sci., 54, 369385, https://doi.org/10.1175/1520-0469(1997)054<0369:TMSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szumowski, M. J., R. M. Rauber, H. T. Ochs III, and K. V. Beard, 1998: The microphysical structure and evolution of Hawaiian rainband clouds. Part II: Aircraft measurements within rainbands containing high reflectivity cores. J. Atmos. Sci., 55, 208226, https://doi.org/10.1175/1520-0469(1998)055<0208:TMSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. W., and Coauthors, 2016: Observations of cloud microphysics and ice formation during COPE. Atmos. Chem. Phys., 16, 799826, https://doi.org/10.5194/acp-16-799-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trömel, S., M. Diederich, M. R. Kumjian, J. C. Picca, and C. Simmer, 2012: Columns of differential reflectivity: A precursor for storm evolution and convective rain. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A33G-0226.

  • Tuttle, J. D., V. N. Bringi, H. D. Orville, and F. J. Kopp, 1989: Multiparameter radar study of a microburst: Comparison with model results. J. Atmos. Sci., 46, 601620, https://doi.org/10.1175/1520-0469(1989)046<0601:MRSOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M., 2016: Polarimetric variability of classic supercell storms as a function of environment. J. Appl. Meteor. Climatol., 55, 19071925, https://doi.org/10.1175/JAMC-D-15-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Lier-Walqui, M., and Coauthors, 2016: On polarimetric radar signatures of deep convection for model evaluation: Columns of specific differential phase observed during MC3E. Mon. Wea. Rev., 144, 737758, https://doi.org/10.1175/MWR-D-15-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., P. Zhang, A. V. Ryzhkov, J. Zhang, and P. L. Chang, 2014: Utilization of specific attenuation for tropical rainfall estimation in complex terrain. J. Hydrometeor., 15, 22502266, https://doi.org/10.1175/JHM-D-14-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and D. Reum, 1988: The flare echo: Reflectivity and velocity signature. J. Atmos. Oceanic Technol., 5, 197205, https://doi.org/10.1175/1520-0426(1988)005<0197:TFERAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., S. E. Yuter, R. A. Houze Jr., and D. E. Kingsmill, 2001: Microphysics of the rapid development of heavy convective precipitation. Mon. Wea. Rev., 129, 18821904, https://doi.org/10.1175/1520-0493(2001)129<1882:MOTRDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Sun, and E. A. Brandes, 2006: Improving parameterization of rain microphysics with disdrometer and radar observations. J. Atmos. Sci., 63, 12731290, https://doi.org/10.1175/JAS3680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2318 1577 151
PDF Downloads 523 110 19