A Stochastic Precipitation Generator Conditioned by a Climate Index

Alejandra De Vera Instituto de Mecánica de los Fluidos e Ingeniería Ambiental, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay

Search for other papers by Alejandra De Vera in
Current site
Google Scholar
PubMed
Close
and
Rafael Terra Instituto de Mecánica de los Fluidos e Ingeniería Ambiental, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay

Search for other papers by Rafael Terra in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work presents a stochastic daily precipitation generator that incorporates a climate index to reflect the associated, seasonally varying, influence on simulated precipitation statistics. The weather generator is based on a first-order, two-state Markov chain to simulate the occurrence of daily precipitation and a gamma distribution to compute the nonzero daily precipitation amounts. Therefore, it has four parameters that are, in turn, allowed to vary daily following an autoregressive linear model in Gaussian space that simulates the parameters’ deviations from their climatological seasonal cycle. This model is forced by the independently predicted evolution of a climate index and captures how the model parameters and, therefore, precipitation are gradually shifted by the associated climate signal. In this case, the Niño-3.4 index is used to account for the influence of the El Niño–Southern Oscillation (ENSO) phenomenon on precipitation in Uruguay. However, the methodology is general and could be readily transferable to indices of other climate modes or downscaling algorithms for seasonal climate prediction. The results show that the proposed methodology successfully captures the ENSO signal on precipitation, including its seasonality. In doing so, it greatly reduces the underestimation of the seasonal and interannual precipitation variability, a well-known limitation of standard weather generators termed the “overdispersion” phenomenon. This work opens interesting opportunities for the application of seasonal climate forecasts in several process-based models (e.g., crop, hydrological, electric power system, water resources), which may be used to inform the decision-making and planning processes to manage climate-related risks.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alejandra De Vera, adevera@fing.edu.uy

Abstract

This work presents a stochastic daily precipitation generator that incorporates a climate index to reflect the associated, seasonally varying, influence on simulated precipitation statistics. The weather generator is based on a first-order, two-state Markov chain to simulate the occurrence of daily precipitation and a gamma distribution to compute the nonzero daily precipitation amounts. Therefore, it has four parameters that are, in turn, allowed to vary daily following an autoregressive linear model in Gaussian space that simulates the parameters’ deviations from their climatological seasonal cycle. This model is forced by the independently predicted evolution of a climate index and captures how the model parameters and, therefore, precipitation are gradually shifted by the associated climate signal. In this case, the Niño-3.4 index is used to account for the influence of the El Niño–Southern Oscillation (ENSO) phenomenon on precipitation in Uruguay. However, the methodology is general and could be readily transferable to indices of other climate modes or downscaling algorithms for seasonal climate prediction. The results show that the proposed methodology successfully captures the ENSO signal on precipitation, including its seasonality. In doing so, it greatly reduces the underestimation of the seasonal and interannual precipitation variability, a well-known limitation of standard weather generators termed the “overdispersion” phenomenon. This work opens interesting opportunities for the application of seasonal climate forecasts in several process-based models (e.g., crop, hydrological, electric power system, water resources), which may be used to inform the decision-making and planning processes to manage climate-related risks.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alejandra De Vera, adevera@fing.edu.uy
Save
  • Aceituno, P., 1992: El Niño, the Southern Oscillation, and ENSO: Confusing names for a complex ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 73, 483485, https://doi.org/10.1175/1520-0477-73.4.483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ailliot, P., D. Allard, and V. Monbet, 2015: Stochastic weather generators: An overview of weather type models. J. Soc. Fr. Stat., 156, 101113.

    • Search Google Scholar
    • Export Citation
  • Aksoy, H., 2000: Use of gamma distribution in hydrological analysis. Turk. J. Eng. Env. Sci., 24, 419428.

  • Baigorria, G. A., and W. J. Jones, 2010: GiST: A stochastic model for generating spatially and temporally correlated daily rainfall data. J. Climate, 23, 59906008, https://doi.org/10.1175/2010JCLI3537.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brissette, F. P., M. Khalili, and R. Leconte, 2007: Efficient stochastic generation of multi-site synthetic precipitation data. J. Hydrol., 345, 121133, https://doi.org/10.1016/j.jhydrol.2007.06.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buishand, T. A., 1977: Stochastic modelling of daily rainfall sequences. Mededelingen Landbouwhogeschool Rep. 77-3, Wageningen, Netherlands, 211 pp., http://edepot.wur.nl/288686.

  • Cazes-Boezio, G., A. W. Robertson, and C. R. Mechoso, 2003: Seasonal dependence of ENSO teleconnections over South America and relationships with precipitation in Uruguay. J. Climate, 16, 11591176, https://doi.org/10.1175/1520-0442(2003)16<1159:SDOETO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaer, R., 2005: Modelo de series correlacionadas CEGH. Curso SimSEE, Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay, 9 pp., https://simsee.org/simsee/curso2010/Cap9_sintetizadorCEGH.pdf.

  • Chaer, R., 2013: Fundamentos del modelo CEGH de procesos estocásticos multivariables. Instituto de Ingeniería Eléctrica Tech. Rep., Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay, 27 pp., https://iie.fing.edu.uy/publicaciones/2011/Cha11/Chaer%20SimSEE.pdf.

  • Chin, E. H., 1977: Modelling daily precipitation occurrence process with Markov chain. Water Resour. Res., 13, 949956, https://doi.org/10.1029/WR013i006p00949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coe, R., and R. D. Stern, 1982: Fitting models to daily rainfall. J. Appl. Meteor., 21, 10241031, https://doi.org/10.1175/1520-0450(1982)021<1024:FMTDRD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Díaz, A. F., C. D. Studzinski, and C. R. Mechoso, 1998: Relationships between precipitation anomalies in Uruguay and southern Brazil and sea surface temperature in the Pacific and Atlantic Oceans. J. Climate, 11, 251271, https://doi.org/10.1175/1520-0442(1998)011<0251:RBPAIU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabriel, K. R., and J. Neumann, 1962: A Markov chain model for daily rainfall occurrence at Tel Aviv. Quart. J. Roy. Meteor. Soc., 88, 9095, https://doi.org/10.1002/qj.49708837511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A., V. R. Barros, and M. E. Doyle, 2000: Climate variability in southern South America associated with El Niño and La Niña events. J. Climate, 13, 3558, https://doi.org/10.1175/1520-0442(2000)013<0035:CVISSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grondona, M., G. Podestá, M. Bidegain, M. Marino, and H. Hordij, 2000: A stochastic precipitation generator conditioned on ENSO phase: A case study in southeastern South America. J. Climate, 13, 29732986, https://doi.org/10.1175/1520-0442(2000)013<2973:ASPGCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., J. Li, and Y. Li, 2014: Seasonal forecasting of north China summer rainfall using a statistical downscaling model. J. Appl. Meteor. Climatol., 53, 17391749, https://doi.org/10.1175/JAMC-D-13-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. W., and A. V. M. Ines, 2005: Stochastic disaggregation of monthly rainfall data for crop simulation studies. Agric. For. Meteor., 131, 233246, https://doi.org/10.1016/j.agrformet.2005.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., 1977a: An application of chain-dependent processes to meteorology. J. Appl. Probab., 14, 598603, https://doi.org/10.2307/3213463.

  • Katz, R. W., 1977b: Precipitation as a chain-dependent process. J. Appl. Meteor., 16, 671676, https://doi.org/10.1175/1520-0450(1977)016<0671:PAACDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and M. B. Parlange, 1996: Mixtures of stochastic processes: Application to statistical downscaling. Climate Res., 7, 185193, https://doi.org/10.3354/cr007185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and M. B. Parlange, 1998: Overdispersion phenomenon in stochastic modeling of precipitation. J. Climate, 11, 591601, https://doi.org/10.1175/1520-0442(1998)011<0591:OPISMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y., B. Rajagopalan, and G. Lee, 2016: Temporal statistical downscaling of precipitation and temperature forecasts using a stochastic weather generator. Adv. Atmos. Sci., 33, 175183, https://doi.org/10.1007/s00376-015-5115-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maciel, F., R. Terra, and R. Chaer, 2015: Economic impact of considering El Niño–Southern Oscillation on the representation of streamflow in an electric system simulator. Int. J. Climatol., 35, 40944102, https://doi.org/10.1002/joc.4269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montecinos, A., A. Díaz, and P. Aceituno, 2000: Seasonal diagnostic and predictability of rainfall in subtropical South America based on tropical Pacific SST. J. Climate, 13, 746758, https://doi.org/10.1175/1520-0442(2000)013<0746:SDAPOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholas, R. E., and D. S. Battisti, 2012: Empirical downscaling of high-resolution regional precipitation from large-scale reanalysis fields. J. Appl. Meteor. Climatol., 51, 100114, https://doi.org/10.1175/JAMC-D-11-04.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pisciottano, G., A. Díaz, G. Cazes, and C. R. Mechoso, 1994: El Niño–Southern Oscillation impact on rainfall in Uruguay. J. Climate, 7, 12861302, https://doi.org/10.1175/1520-0442(1994)007<1286:ENSOIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., and U. Lall, 1999: A k-nearest neighbor simulator for daily precipitation and other weather variables. Water Resour. Res., 35, 30893101, https://doi.org/10.1029/1999WR900028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., U. Lall, and D. G. Tarboton, 1996: Nonhomogeneous Markov model for daily precipitation. J. Hydrol. Eng., 1, 3340, https://doi.org/10.1061/(ASCE)1084-0699(1996)1:1(33).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Racsko, P., L. Szeidl, and M. Semenov, 1991: A serial approach to local stochastic weather models. Ecol. Modell., 57, 2741, https://doi.org/10.1016/0304-3800(91)90053-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, C. W., 1981: Stochastic simulation of daily precipitation, temperature and solar radiation. Water Resour. Res., 17, 182190, https://doi.org/10.1029/WR017i001p00182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Nino/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2, 268284, https://doi.org/10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semenov, M. A., and E. M. Barrow, 1997: Use of stochastic weather generator in the development of climate change scenarios. Climatic Change, 35, 397414, https://doi.org/10.1023/A:1005342632279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, R. D., and R. Coe, 1984: A model fitting analysis of daily rainfall data. J. Roy. Stat. Soc., 147A, 134, https://doi.org/10.2307/2981736.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verdin, A., B. Rajagopalan, W. Kleiber, G. Podestá, and F. Bert, 2018: A conditional stochastic weather generator for seasonal to multi-decadal simulations. J. Hydrol., 556, 835846, https://doi.org/10.1016/j.jhydrol.2015.12.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., D. Conway, and P. D. Jones, 2002: Prospects for downscaling seasonal precipitation variability using conditioned weather generator parameters. Hydrol. Processes, 16, 12151234, https://doi.org/10.1002/hyp.1058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1992: Adapting stochastic weather generation algorithms for climate changes studies. Climatic Change, 22, 6784, https://doi.org/10.1007/BF00143344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1998: Multisite generalization of a daily stochastic precipitation generation model. J. Hydrol., 210, 178191, https://doi.org/10.1016/S0022-1694(98)00186-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1999: Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agric. For. Meteor., 93, 153169, https://doi.org/10.1016/S0168-1923(98)00125-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2010: Use of stochastic weather generators for precipitation downscaling. Wiley Interdiscip. Rev.: Climate Change, 1, 898907, https://doi.org/10.1002/wcc.85.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., and R. L. Wilby, 1999: The weather generation game: A review of stochastic weather models. Prog. Phys. Geogr., 23, 329357, https://doi.org/10.1177/030913339902300302.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1748 1069 113
PDF Downloads 420 57 2