The Effect of Urban Density and Vegetation Cover on the Heat Island of a Subtropical City

Sarah Chapman School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland, Australia

Search for other papers by Sarah Chapman in
Current site
Google Scholar
PubMed
Close
,
Marcus Thatcher CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by Marcus Thatcher in
Current site
Google Scholar
PubMed
Close
,
Alvaro Salazar School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland, Australia

Search for other papers by Alvaro Salazar in
Current site
Google Scholar
PubMed
Close
,
James E. M. Watson School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland, Australia, and Global Conservation Program, Wildlife Conservation Society, Bronx, New York

Search for other papers by James E. M. Watson in
Current site
Google Scholar
PubMed
Close
, and
Clive A. McAlpine School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland, Australia

Search for other papers by Clive A. McAlpine in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The urban heat island (UHI) has a negative impact on the health of urban residents by increasing average temperatures. The intensity of the UHI effect is influenced by urban geometry and the amount of vegetation cover. This study investigated the impact of urban growth and loss of vegetation cover on the UHI in a subtropical city (Brisbane, Australia) during average and extreme conditions using the Conformal Cubic Atmospheric Model, run at a 1-km spatial resolution for 10 years. The average nighttime temperature increase was 0.7°C for the “Medium Density” urban growth scenario and 1.8°C for the “No Vegetation” scenario. During two widespread extreme heat events, the mean maximum increase in urban temperatures above the Control was between 2.2° and 3.8°C in the No Vegetation scenario and between 0.3° and 1.6°C in the Medium Density urban growth scenario. The results are similar to previous findings for temperate cities, with the intensity of the UHI effect higher at night and during winter than during the day and summer. Vegetation cover had the strongest impact on temperatures, more so than building height and height/width ratio. Maintaining and restoring vegetation, therefore, is a key consideration in mitigating the urban heat island. The large temperature increases found in this study, particularly during extreme heat events, shows the importance of reducing the UHI for protecting the health of urban residents, and this should be a priority in urban landscape planning and design.

Additional affiliations: Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena, and Instituto de Ecología y Biodiversidad, Universidad de Chile, Ñuñoa, Chile.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah Chapman, s.chapman@uq.edu.au

Abstract

The urban heat island (UHI) has a negative impact on the health of urban residents by increasing average temperatures. The intensity of the UHI effect is influenced by urban geometry and the amount of vegetation cover. This study investigated the impact of urban growth and loss of vegetation cover on the UHI in a subtropical city (Brisbane, Australia) during average and extreme conditions using the Conformal Cubic Atmospheric Model, run at a 1-km spatial resolution for 10 years. The average nighttime temperature increase was 0.7°C for the “Medium Density” urban growth scenario and 1.8°C for the “No Vegetation” scenario. During two widespread extreme heat events, the mean maximum increase in urban temperatures above the Control was between 2.2° and 3.8°C in the No Vegetation scenario and between 0.3° and 1.6°C in the Medium Density urban growth scenario. The results are similar to previous findings for temperate cities, with the intensity of the UHI effect higher at night and during winter than during the day and summer. Vegetation cover had the strongest impact on temperatures, more so than building height and height/width ratio. Maintaining and restoring vegetation, therefore, is a key consideration in mitigating the urban heat island. The large temperature increases found in this study, particularly during extreme heat events, shows the importance of reducing the UHI for protecting the health of urban residents, and this should be a priority in urban landscape planning and design.

Additional affiliations: Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena, and Instituto de Ecología y Biodiversidad, Universidad de Chile, Ñuñoa, Chile.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah Chapman, s.chapman@uq.edu.au
Save
  • Adachi, S. A., F. Kimura, H. Kusaka, M. G. Duda, Y. Yamagata, H. Seya, K. Nakamichi, and T. Aoyagi, 2014: Moderation of summertime heat island phenomena via modification of the urban form in the Tokyo metropolitan area. J. Appl. Meteor. Climatol., 53, 18861900, https://doi.org/10.1175/JAMC-D-13-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, https://doi.org/10.1002/joc.859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Australian Bureau of Statistics, 2013: Population projections, Australia, 2012 (base) to 2101. Australian Bureau of Statistics Doc., 56 pp., http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3222.02012%20(base)%20to%202101?OpenDocument.

  • Basara, J. B., H. G. Basara, B. G. Illston, and K. C. Crawford, 2010: The impact of the urban heat island during an intense heat wave in Oklahoma City. Adv. Meteor., 2010, 230365, http://dx.doi.org/10.1155/2010/230365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, D. H., and Coauthors, 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 4164, https://doi.org/10.22499/2.6301.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brisbane City Council, 2014: Brisbane City Plan 2014. Accessed 3 August 2018, https://www.brisbane.qld.gov.au/planning-building/planning-guidelines-tools/brisbane-city-plan-2014.

  • Broitman, D., and E. Koomen, 2015: Residential density change: Densification and urban expansion. Comput. Environ. Urban Syst., 54, 3246, https://doi.org/10.1016/j.compenvurbsys.2015.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bureau of Meteorology, 2017: Summary statistics Brisbane. Commonwealth of Australia, accessed 15 February 2016, http://www.bom.gov.au/climate/averages/tables/cw_040223.shtml.

  • Chan, E. H. W., and E. H. K. Yung, 2004: Is the development control legal framework conducive to a sustainable dense urban development in Hong Kong? Habitat Int., 28, 409426, https://doi.org/10.1016/S0197-3975(03)00040-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-R., M.-H. Li, and S.-D. Chang, 2007: A preliminary study on the local cool-island intensity of Taipei city parks. Landscape Urban Plann., 80, 386395, https://doi.org/10.1016/j.landurbplan.2006.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., J. E. M. Watson, and C. A. McAlpine, 2016: Large seasonal and diurnal anthropogenic heat flux across four Australian cities. J. South. Hemisphere Earth Syst. Sci., 66, 342360, https://doi.org/10.22499/3.6003.00006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., J. E. M. Watson, A. Salazar, M. Thatcher, and C. A. McAlpine, 2017: The impact of urbanization and climate change on urban temperatures: A systematic review. Landscape Ecol., 32, 19211935, https://doi.org/10.1007/s10980-017-0561-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., X. Wang, M. Thatcher, G. Barnett, A. Kachenko, and R. Prince, 2014: Urban vegetation for reducing heat related mortality. Environ. Pollut., 192, 275284, https://doi.org/10.1016/j.envpol.2014.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., M. Thatcher, X. Wang, G. Barnett, A. Kachenko, and R. Prince, 2015: Summer cooling potential of urban vegetation—A modeling study for Melbourne, Australia. AIMS Environ. Sci., 2, 648667, https://doi.org/10.3934/environsci.2015.3.648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chouinard, C., M. Béland, and N. McFarlane, 1986: A simple gravity wave drag parametrization for use in medium‐range weather forecast models. Atmos.–Ocean, 24, 91110, https://doi.org/10.1080/07055900.1986.9649242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, J. F., 1972: Some effects of the urban structure on heat mortality. Environ. Res., 5, 93104, https://doi.org/10.1016/0013-9351(72)90023-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coutts, A. M., J. Beringer, and N. J. Tapper, 2007: Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia. J. Appl. Meteor. Climatol., 46, 477480, 482–493, https://doi.org/10.1175/JAM2462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coutts, A. M., J. Beringer, and N. J. Tapper, 2008: Investigating the climatic impact of urban planning strategies through the use of regional climate modelling: A case study for Melbourne, Australia. Int. J. Climatol., 28, 19431957, https://doi.org/10.1002/joc.1680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coutts, A. M., E. C. White, N. J. Tapper, J. Beringer, and S. J. Livesley, 2016: Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor. Appl. Climatol., 124, 5568, https://doi.org/10.1007/s00704-015-1409-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davy, R., and I. Esau, 2016: Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth. Nat. Commun., 7, 11 690, https://doi.org/10.1038/ncomms11690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gedzelman, S. D., S. Austin, R. Cermak, N. Stefano, S. Partridge, S. Quesenberry, and D. A. Robinson, 2003: Mesoscale aspects of the urban heat island around New York City. Theor. Appl. Climatol., 75, 2942, https://doi.org/10.1007/s00704-002-0724-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Global Land Cover Facility, 2018: MODIS land cover. University of Maryland, http://glcf.umd.edu/data/lc/.

  • Grimmond, C. S. B., 2007: Urbanization and global environmental change: Local effects of urban warming. Geogr. J., 173, 8388, https://doi.org/10.1111/j.1475-4959.2007.232_3.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1991: An evapotranspiration-interception model for urban areas. Water Resour. Res., 27, 17391755, https://doi.org/10.1029/91WR00557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunawardena, K. R., M. J. Wells, and T. Kershaw, 2017: Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ., 584–585, 10401055, https://doi.org/10.1016/j.scitotenv.2017.01.158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hajat, S., M. O’Connor, and T. Kosatsky, 2010: Health effects of hot weather: from awareness of risk factors to effective health protection. Lancet, 375, 856863, https://doi.org/10.1016/S0140-6736(09)61711-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heisler, G. M., 1977: Trees modify metropolitan climate and noise. J. Arboric., 3, 201207.

  • Hidalgo, J., V. Masson, A. Baklanov, G. Pigeon, and L. Gimeno, 2008: Advances in urban climate modeling. Ann. N. Y. Acad. Sci., 1146, 354374, https://doi.org/10.1196/annals.1446.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, P., J. J. Katzfey, J. L. McGregor, and M. Thatcher, 2016: Bias and variance correction of sea surface temperatures used for dynamical downscaling. J. Geophys. Res. Atmos., 121, 12 87712 890, https://doi.org/10.1002/2016JD025383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842, https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hyatt, O. M., B. Lemke, and T. Kjellstrom, 2010: Regional maps of occupational heat exposure: Past, present, and potential future. Global Health Action, 3, 5715, https://doi.org/10.3402/gha.v3i0.5715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karam, H. A., A. J. Pereira Filho, V. Masson, J. Noilhan, and E. P. Marques Filho, 2010: Formulation of a tropical town energy budget (t-TEB) scheme. Theor. Appl. Climatol., 101, 109120, https://doi.org/10.1007/s00704-009-0206-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kowalczyk, E., Y. P. Wang, R. M. Law, H. L. Davies, J. L. McGregor, and G. Abramowitz, 2006: The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model. CSIRO Marine and Atmospheric Research Paper 013, 42 pp.

  • Li, D., and E. Bou-Zeid, 2013: Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteor. Climatol., 52, 20512064, https://doi.org/10.1175/JAMC-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., T. Sun, M. Liu, L. Yang, L. Wang, and Z. Gao, 2015: Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environ. Res. Lett., 10, 054009, https://doi.org/10.1088/1748-9326/10/5/054009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loughner, C. P., D. J. Allen, D. Zhang, K. E. Pickering, R. R. Dickerson, and L. Landry, 2012: Roles of urban tree canopy and buildings in urban heat island effects: Parameterization and preliminary results. J. Appl. Meteor. Climatol., 51, 17751793, https://doi.org/10.1175/JAMC-D-11-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luber, G., and M. McGeehin, 2008: Climate change and extreme heat events. Amer. J. Prev. Med., 35, 429435, https://doi.org/10.1016/j.amepre.2008.08.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luhar, A. K., M. Thatcher, and P. J. Hurley, 2014: Evaluating a building-averaged urban surface scheme in an operational mesoscale model for flow and dispersion. Atmos. Environ., 88, 4758, https://doi.org/10.1016/j.atmosenv.2014.01.059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357397, https://doi.org/10.1023/A:1002463829265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, J. L. 2003: A new convection scheme using a simple closure. Current Issues in the Parameterization of Convection: Extended Abstracts of Presentations at the Fifteenth Annual BMRC Modelling Workshop, P. J. Meighen and A. J. Hollis, Eds., Bureau of Meteorology Research Centre, 33–36.

  • McGregor, J. L., and M. R. Dix, 2001: The CSIRO conformal-cubic atmospheric GCM. IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, P. F. Hodnett, Ed., Springer, 197–202.

    • Crossref
    • Export Citation
  • McGregor, J. L., and M. R. Dix, 2008: An updated description of the conformal-cubic atmospheric model. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 51–75.

    • Crossref
    • Export Citation
  • McGregor, J. L., H. B. Gordon, I. G. Watterson, M. R. Dix, and L. D. Rotstayn, 1993: The CSIRO 9-level atmospheric general circulation model. CSIRO Tech. Paper 26, 93 pp., http://www.cmar.csiro.au/e-print/open/mcgregor_1993a.pdf.

  • NSW Department of Planning and Environment, 2014: A plan for growing Sydney. NSW Government Rep., https://gsc-public-1.s3.amazonaws.com/s3fs-public/2014_12_a_plan_for_growing_sydney.pdf.

  • Oke, T. R., 1981: Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. J. Climatol., 1, 237254, https://doi.org/10.1002/joc.3370010304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 124, https://doi.org/10.1002/qj.49710845502.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 2002: Boundary Layer Climates. Routledge, 464 pp.

  • Oke, T. R., 2004: Initial guidance to obtain representative meteorological observations at urban sites. WMO/TD-1250, IOM Rep. 81, 51 pp., http://library.wmo.int/pmb_ged/wmo-td_1250.pdf.

  • Pielke, R. A., R. Mahmood, and C. McAlpine, 2016: Land’s complex role in climate change. Phys. Today, 69, 4046, https://doi.org/10.1063/PT.3.3364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potchter, O., P. Cohen, and A. Bitan, 2006: Climatic behavior of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel. Int. J. Climatol., 26, 16951711, https://doi.org/10.1002/joc.1330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramakrishnan, S., X. Wang, J. Sanjayan, and J. Wilson, 2016: Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events. Appl. Energy, 194, 410421, https://doi.org/10.1016/j.apenergy.2016.04.084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, Z., X. Wang, D. Chen, C. Wang, and M. Thatcher, 2014: Constructing weather data for building simulation considering urban heat island. Build. Serv. Eng. Res. Tech., 35, 6982, https://doi.org/10.1177/0143624412467194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, M., 2007: Review of urban climate research in (sub)tropical regions. Int. J. Climatol., 27, 18591873, https://doi.org/10.1002/joc.1591.

  • Rotstayn, L. D., 1997: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of the microphysical processes. Quart. J. Roy. Meteor. Soc., 123, 12271282, https://doi.org/10.1002/qj.49712354106.

    • Search Google Scholar
    • Export Citation
  • Sakakibara, Y., 1996: A numerical study of the effect of urban geometry upon the surface energy budget. Atmos. Environ., 30, 487496, https://doi.org/10.1016/1352-2310(94)00150-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrijvers, P. J. C., H. J. J. Jonker, S. Kenjereš, and S. R. de Roode, 2015: Breakdown of the night time urban heat island energy budget. Build. Environ., 83, 5064, https://doi.org/10.1016/j.buildenv.2014.08.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarzkopf, M. D., and S. B. Fels, 1991: The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res., 96, 90759096, https://doi.org/10.1029/89JD01598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarzkopf, M. D., and V. Ramaswamy, 1999: Radiative effects of CH4, N2O, halocarbons and the foreign‐broadened H2O continuum: A GCM experiment. J. Geophys. Res., 104, 94679488, https://doi.org/10.1029/1999JD900003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, A. A., D. W. Waugh, and B. F. Zaitchik, 2018: Reduced Urban Heat Island intensity under warmer conditions. Environ. Res. Lett., 13, 064003, https://doi.org/10.1088/1748-9326/aabd6c.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, K. C., M. Fragkias, B. Güneralp, and M. K. Reilly, 2011: A meta-analysis of global urban land expansion. PLOS ONE, 6, e23777, https://doi.org/10.1371/journal.pone.0023777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, K. C., B. Güneralp, and L. R. Hutyra, 2012: Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA, 109, 16 08316 088, https://doi.org/10.1073/pnas.1211658109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharifi, E., and S. Lehmann, 2014: Comparative analysis of surface urban heat island effect in central Sydney. J. Sustain. Dev., 7, 2334, https://doi.org/10.5539/jsd.v7n3p23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spronken-Smith, R. A., and T. R. Oke, 1998: The thermal regime of urban parks in two cities with different summer climates. Int. J. Remote Sens., 19, 20852104, https://doi.org/10.1080/014311698214884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spronken-Smith, R. A., and T. R. Oke, 1999: Scale modelling of nocturnal cooling in urban parks. Bound.-Layer Meteor., 93, 287312, https://doi.org/10.1023/A:1002001408973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., 2011: A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol., 31, 200217, https://doi.org/10.1002/joc.2141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, T., C. S. B. Grimmond, and G.-H. Ni, 2016: How do green roofs mitigate urban thermal stress under heat waves? J. Geophys. Res. Atmos., 121, 53205335, https://doi.org/10.1002/2016JD024873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thatcher, M., and P. Hurley, 2012: Simulating Australian urban climate in a mesoscale atmospheric numerical model. Bound.-Layer Meteor., 142, 149175, https://doi.org/10.1007/s10546-011-9663-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trewin, B., 2013: A daily homogenized temperature data set for Australia. Int. J. Climatol., 33, 15101529, https://doi.org/10.1002/joc.3530.

  • Unger, J., 2009: Connection between urban heat island and sky view factor approximated by a software tool on a 3D urban database. Int. J. Environ. Pollut., 36, 5980, https://doi.org/10.1504/IJEP.2009.021817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, K., S. Lauf, B. Kleinschmit, and W. Endlicher, 2016: Heat waves and urban heat islands in Europe: A review of relevant drivers. Sci. Total Environ., 569–570, 527539, https://doi.org/10.1016/j.scitotenv.2016.06.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wienert, U., and W. Kuttler, 2005: The dependence of the urban heat island intensity on latitude—A statistical approach. Meteor. Z., 14, 677686, https://doi.org/10.1127/0941-2948/2005/0069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., 2008: Constructing climate change scenarios of urban heat island intensity and air quality. Environ. Plann., 35B, 902919, https://doi.org/10.1068/b33066t.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yow, D. M., 2007: Urban heat islands: Observations, impacts, and adaptation. Geogr. Compass, 1, 12271251, https://doi.org/10.1111/j.1749-8198.2007.00063.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yunusa, I. A. M., D. Eamus, D. Taylor, R. Whitley, W. Gwenzi, A. R. Palmer, and Z. Li, 2015: Partitioning of turbulent flux reveals contrasting cooling potential for woody vegetation and grassland during heat waves. Quart. J. Roy. Meteor. Soc., 141, 25282537, https://doi.org/10.1002/qj.2539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., J. Wang, and M. L. Cadenasso, 2017: Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ., 195, 112, https://doi.org/10.1016/j.rse.2017.03.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6311 3084 259
PDF Downloads 3233 815 117