Examining WRF’s Sensitivity to Contemporary Land-Use Datasets across the Contiguous United States Using Dynamical Downscaling

Megan S. Mallard National Exposure Research Laboratory, Environmental Protection Agency, Research Triangle Park, North Carolina

Search for other papers by Megan S. Mallard in
Current site
Google Scholar
PubMed
Close
,
Tanya L. Spero National Exposure Research Laboratory, Environmental Protection Agency, Research Triangle Park, North Carolina

Search for other papers by Tanya L. Spero in
Current site
Google Scholar
PubMed
Close
, and
Stephany M. Taylor National Exposure Research Laboratory, Environmental Protection Agency, Research Triangle Park, North Carolina

Search for other papers by Stephany M. Taylor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Land-use (LU) representation plays a critical role in simulating air–surface interactions that affect meteorological conditions and regional climate. In the Noah LSM within the WRF Model, LU categories are used to set the radiative properties of the surface and to influence exchanges of heat, moisture, and momentum between the air and land surface. Previous literature examined the sensitivity of WRF simulations to LU using short-term meteorological modeling approaches. Here, the sensitivity to LU representation is studied using continental-scale dynamical downscaling, which typically uses longer temporal and larger spatial scales. Two LU datasets, the U.S. Geological Survey (USGS) dataset and the 2006 National Land Cover Dataset (NLCD), are utilized in 3-yr dynamically downscaled WRF simulations over a historical period. Precipitation and 2-m air temperature are evaluated against observation-based datasets for simulations covering the contiguous United States. The WRF-NLCD simulation tends to produce lower precipitation than the WRF-USGS run, with slightly warmer mean monthly temperatures. However, WRF-NLCD results in more notable increases in the frequency of hot days [i.e., days with temperature >90°F (32.2°C)]. These changes are attributable to reductions in forest and agricultural area in the NLCD relative to USGS. There is also subtle but important sensitivity to the method of interpolating LU data to the WRF grid in the model preprocessing. In all cases, the sensitivity resulting from changes in the LU is smaller than model error. Although this sensitivity is small, it persists across spatial and temporal scales.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Megan Mallard, mallard.megan@epa.gov

Abstract

Land-use (LU) representation plays a critical role in simulating air–surface interactions that affect meteorological conditions and regional climate. In the Noah LSM within the WRF Model, LU categories are used to set the radiative properties of the surface and to influence exchanges of heat, moisture, and momentum between the air and land surface. Previous literature examined the sensitivity of WRF simulations to LU using short-term meteorological modeling approaches. Here, the sensitivity to LU representation is studied using continental-scale dynamical downscaling, which typically uses longer temporal and larger spatial scales. Two LU datasets, the U.S. Geological Survey (USGS) dataset and the 2006 National Land Cover Dataset (NLCD), are utilized in 3-yr dynamically downscaled WRF simulations over a historical period. Precipitation and 2-m air temperature are evaluated against observation-based datasets for simulations covering the contiguous United States. The WRF-NLCD simulation tends to produce lower precipitation than the WRF-USGS run, with slightly warmer mean monthly temperatures. However, WRF-NLCD results in more notable increases in the frequency of hot days [i.e., days with temperature >90°F (32.2°C)]. These changes are attributable to reductions in forest and agricultural area in the NLCD relative to USGS. There is also subtle but important sensitivity to the method of interpolating LU data to the WRF grid in the model preprocessing. In all cases, the sensitivity resulting from changes in the LU is smaller than model error. Although this sensitivity is small, it persists across spatial and temporal scales.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Megan Mallard, mallard.megan@epa.gov
Save
  • Alapaty, K., J. A. Herwehe, T. L. Otte, C. G. Nolte, O. R. Bullock, M. S. Mallard, J. S. Kain, and J. Dudhia, 2012: Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophys. Res. Lett., 39, L24808, https://doi.org/10.1029/2012GL054031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avila, F. B., A. J. Pitman, M. G. Donat, L. V. Alexander, and G. Abramowitz, 2012: Climate model simulated changes in temperature extremes due to land cover change. J. Geophys. Res., 117, D04108, https://doi.org/10.1029/2011JD016382.

    • Search Google Scholar
    • Export Citation
  • Bieniek, P. A., U. S. Bhatt, J. E. Walsh, T. S. Rupp, J. Zhang, J. R. Krieger, and R. Lader, 2016: Dynamical downscaling of ERA-Interim temperature and precipitation for Alaska. J. Appl. Meteor. Climatol., 55, 635654, https://doi.org/10.1175/JAMC-D-15-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowden, J. H., T. L. Otte, C. G. Nolte, and M. J. Otte, 2012: Examining interior grid nudging techniques using two-way nesting in the WRF Model for regional climate modeling. J. Climate, 25, 28052823, https://doi.org/10.1175/JCLI-D-11-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowden, J. H., C. G. Nolte, and T. L. Otte, 2013: Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology. Climate Dyn., 40, 19031920, https://doi.org/10.1007/s00382-012-1440-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., and Coauthors, 2017: Impact of climate change on Gulf of Mexico hurricanes. NCAR Tech. Note NCAR/TN-535+STR, 158 pp., https://opensky.ucar.edu/islandora/object/technotes%3A552.

  • Bullock, O. R., K. Alapaty, J. A. Herwehe, M. Mallard, T. L. Otte, R. C. Gilliam, and C. G. Nolte, 2014: An observation-based investigation of nudging in WRF for downscaling surface climate information to 12-km grid spacing. J. Appl. Meteor. Climatol., 53, 2033, https://doi.org/10.1175/JAMC-D-13-030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casati, B., A. Yagouti, and D. Chaumont, 2013: Regional climate projections of extreme heat events in nine pilot Canadian communities for public health planning. J. Appl. Meteor. Climatol., 52, 26692698, https://doi.org/10.1175/JAMC-D-12-0341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., and P. Xie, 2008: CPC unified gauge-based analysis of global daily precipitation. Eos Trans. Amer. Geophys. Union, 89 (Western Pacific Geophysics Meeting Suppl.), Abstract A24A-05.

    • Search Google Scholar
    • Export Citation
  • Cheng, F. Y., Y. C. Hsu, P. L. Lin, and T. H. Lin, 2013: Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan area. J. Appl. Meteor. Climatol., 52, 570587, https://doi.org/10.1175/JAMC-D-12-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, W., X. Dong, B. Xi, and A. Kennedy, 2017: Evaluation of reanalyzed precipitation variability and trends using the gridded gauge-based analysis over the CONUS. J. Hydrometeor., 18, 22272248, https://doi.org/10.1175/JHM-D-17-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darmenova, K., D. Apling, G. Higgins, P. Hayes, and H. Kiley, 2013: Assessment of the regional climate change and development of climate adaptation decision aids in the southwestern United States. J. Appl. Meteor. Climatol., 52, 303322, https://doi.org/10.1175/JAMC-D-11-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, J. P., P. J. Adams, and S. N. Pandis, 2007: Sensitivity of ozone to summertime climate in the eastern USA: A modeling case study. Atmos. Environ., 41, 14941511, https://doi.org/10.1016/j.atmosenv.2006.10.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decremer, D., C. E. Chung, A. M. L. Ekman, and J. Brandefelt, 2014: Which significance test performs the best in climate simulations? Tellus, 66A, 21339, https://doi.org/10.3402/tellusa.v66.23139.

    • Search Google Scholar
    • Export Citation
  • Deo, R. C., J. I. Syktus, C. A. McAlpine, P. J. Lawrence, H. A. McGowan, and S. R. Phinn, 2009: Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia. Geophys. Res. Lett., 36, L08705, https://doi.org/10.1029/2009GL037666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EPA, 2017: Multi-model framework for quantitative sectoral impacts analysis: A technical report for the Fourth National Climate Assessment. Environmental Protection Agency Rep. EPA 430-R-17-001, 271 pp., https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=335095.

  • Fann, N., C. G. Nolte, P. Dolwick, T. L. Spero, A. Curry Brown, S. Phillips, and S. Anenberg, 2015: The geographic distribution and economic value of climate change–related ozone health impacts in the United States in 2030. J. Air Waste Manage. Assoc., 65, 570580, https://doi.org/10.1080/10962247.2014.996270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fann, N., and Coauthors, 2016: Air quality impacts. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment, A. Crimmins et al., Eds., U.S. Global Change Research Program, 69–98, https://doi.org/10.7930/J0GQ6VP6.

    • Crossref
    • Export Citation
  • Fry, J., and Coauthors, 2011: Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sensing, 77, 858864.

    • Search Google Scholar
    • Export Citation
  • Gan, C. M., F. Binkowski, J. Pleim, J. Xing, D. Wong, R. Mathur, and R. Gilliam, 2015: Assessment of the aerosol optics component of the coupled WRF–CMAQ Model using CARES field campaign data and a single column model. Atmos. Environ., 115, 670682, https://doi.org/10.1016/j.atmosenv.2014.11.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, C. M., and Coauthors, 2016: Assessment of the effects of horizontal grid resolution on long-term air quality trends using coupled WRF-CMAQ simulations. Atmos. Environ., 132, 207216, https://doi.org/10.1016/j.atmosenv.2016.02.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. S. Fu, J. B. Drake, Y. Liu, and J.-F. Lamarque, 2012: Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. Environ. Res. Lett., 7, 044025, https://doi.org/10.1088/1748-9326/7/4/044025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and G. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183.

    • Search Google Scholar
    • Export Citation
  • Haman, C. L., E. Couzo, J. H. Flynn, W. Vizuete, B. Heffron, and B. L. Lefer, 2014: Relationship between boundary layer heights and growth rates with ground-level ozone in Houston, Texas. J. Geophys. Res. Atmos., 119, 62306245, https://doi.org/10.1002/2013JD020473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., M. Zhang, W. Lin, B. Colle, P. Liu, and A. M. Vogelmann, 2013: The WRF nested within the CESM: Simulations of a midlatitude cyclone over the southern Great Plains. J. Adv. Model. Earth Syst., 5, https://doi.org/10.1002/jame.20042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herwehe, J. A., K. Alapaty, T. L. Spero, and C. G. Nolte, 2014: Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud–radiation interactions. J. Geophys. Res. Atmos., 119, 53175330, https://doi.org/10.1002/2014JD021504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, R., and Coauthors, 2014: Northeast. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 371–395.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jimenez, P. A., J. Dudhia, J. F. Gonzalez-Rouco, J. Navarro, J. P. Montávez, and E. Garcia-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamal, S., H.-P. Huang, and S. W. Myint, 2015: The influence of urbanization on the climate of the Las Vegas metropolitan area: A numerical study. J. Appl. Meteor. Climatol., 54, 21572177, https://doi.org/10.1175/JAMC-D-15-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and W. J. Koss, 1984: Regional and national monthly, seasonal, and annual temperature weighted by area, 1895–1983. National Climatic Data Center Historical Climatology Series 4-3, 38 pp., https://repository.library.noaa.gov/view/noaa/10238.

  • Karl, T. R., J. M. Melillo, and T. C. Peterson, Eds., 2009: Global Climate Change Impacts in the United States. Cambridge University Press, 196 pp.

  • Li, D., E. Bou-Zeid, M. Baeck, S. Jessup, and J. Smith, 2013: Modeling land surface processes and heavy rainfall in urban environments: Sensitivity to urban surface representations. J. Hydrometeor., 14, 10981118, https://doi.org/10.1175/JHM-D-12-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., G. Lu, Z. Wu, H. He, and J. He, 2017: High-resolution dynamical downscaling of seasonal precipitation forecasts for the Hanjiang basin in China using the Weather Research and Forecasting Model. J. Appl. Meteor. Climatol., 56, 15151536, https://doi.org/10.1175/JAMC-D-16-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2012: Regional Climate–Weather Research and Forecasting Model (CWRF). Bull. Amer. Meteor. Soc., 93, 13631387, https://doi.org/10.1175/BAMS-D-11-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez-Espinoza, E. D., J. Zavala-Hidalgo, and O. Gomez-Ramos, 2012: Weather forecast sensitivity to changes in urban land covers using the WRF Model for central Mexico. Atmósfera, 25, 127154.

    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, J. Zhu, L. Yang, and J. W. Merchant, 2000: Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data. Int. J. Remote Sens., 21, 13031330, https://doi.org/10.1080/014311600210191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallard, M. S., C. G. Nolte, O. R. Bullock, T. L. Spero, and J. Gula, 2014: Using a coupled lake model with WRF for dynamical downscaling. J. Geophys. Res. Atmos., 119, 71937208, https://doi.org/10.1002/2014JD021785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 13371362, https://doi.org/10.1175/BAMS-D-11-00223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, https://doi.org/10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • NCAR, 2002: WRF standard initialization—Preparing input data. In User’s Guide for Weather Research and Forecast (WRF) Modeling System Version 2. National Center for Atmospheric Research Doc., http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_old/Attic/users_guide_chap3.html.

  • NCAR, 2006: WRF Preprocessing System version 2. National Center for Atmospheric Research, http://www2.mmm.ucar.edu/wrf/users/wpsv2/wps.html.

  • NCAR, 2014: ARW version 3 modeling system user’s guide. National Center for Atmospheric Research Doc., 413 pp., http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.5/ARWUsersGuideV3.pdf.

  • NCAR, 2017: ARW version 3 modeling system user’s guide. National Center for Atmospheric Research Doc., 434 pp., http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.8/ARWUsersGuideV3.8.pdf.

  • Nolte, C. G., A. B. Gilliland, C. Hogrefe, and L. J. Mickley, 2008: Linking global to regional models to assess future climate impacts on surface ozone levels in the United States. J. Geophys. Res., 113, D14307, https://doi.org/10.1029/2007JD008497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otte, T. L., C. G. Nolte, M. J. Otte, and J. H. Bowden, 2012: Does nudging squelch the extremes in regional climate modeling? J. Climate, 25, 70467066, https://doi.org/10.1175/JCLI-D-12-00048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., and K. H. Cook, 2010: Northern African climate at the end of the twenty-first century: An integrated application of regional and global climate models. Climate Dyn., 35, 193212, https://doi.org/10.1007/s00382-009-0623-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., A. J. Pitman, N. Holbrook, and J. McAneney, 2007: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20, 43564376, https://doi.org/10.1175/JCLI4253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and A. Xiu, 2003: Development of a land surface model. Part II: Data assimilation. J. Appl. Meteor., 42, 18111822, https://doi.org/10.1175/1520-0450(2003)042<1811:DOALSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and R. Gilliam, 2009: An indirect data assimilation scheme for deep soil temperature in the Pleim–Xiu land surface model. J. Appl. Meteor. Climatol., 48, 13621376, https://doi.org/10.1175/2009JAMC2053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ran, L., J. Pleim, and R. Gilliam, 2010: Impact of high resolution land-use data in meteorology and air quality modeling systems. Air Pollution Modeling and Its Applications XX, D. G. Steyn and S. T. Rao, Eds., Springer, 3–7.

  • Ran, L., R. Gilliam, F. S. Binkowski, A. Xiu, J. Pleim, and L. Band, 2015: Sensitivity of the Weather Research and Forecast/Community Multiscale Air Quality modeling system to MODIS LAI, FPAR, and albedo. J. Geophys. Res. Atmos., 120, 84918511, https://doi.org/10.1002/2015JD023424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, C., and S. Tong, 2006: Temperature modifies the health effects of particulate matter in Brisbane, Australia. Int. J. Biometeor., 51, 8796, https://doi.org/10.1007/s00484-006-0054-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sertel, E., A. Robock, and C. Ormeci, 2010: Impacts of land cover data quality on regional climate simulations. Int. J. Climatol., 30, 19421953, https://doi.org/10.1002/joc.2036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spero, T. L., C. G. Nolte, J. H. Bowden, M. S. Mallard, and J. A. Herwehe, 2016: The impact of incongruous lake temperatures on regional climate extremes downscaled from the CMIP5 archive using the WRF Model. J. Climate, 29, 839853, https://doi.org/10.1175/JCLI-D-15-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tai, A. P. K., L. J. Mickley, and D. J. Jacob, 2010: Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ., 44, 39763984, https://doi.org/10.1016/j.atmosenv.2010.06.060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vose, R. S., and Coauthors, 2014: NOAA’s Gridded Climate Divisional Dataset (CLIMDIV). NOAA/National Climatic Data Center, accessed 18 July 2018, https://doi.org/10.7289/V5M32STR.

    • Crossref
    • Export Citation
  • Walsh, J., and Coauthors, 2014: Our changing climate. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 19–67, https://doi.org/10.7930/J0KW5CXT.

    • Crossref
    • Export Citation
  • Wobus, C., and Coauthors, 2017: Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States. Nat. Hazards Earth Syst. Sci., 17, 21992211, https://doi.org/10.5194/nhess-17-2199-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wootten, A., J. H. Bowden, R. Boyles, and A. Terando, 2016: The sensitivity of WRF downscaled precipitation in Puerto Rico to cumulus parameterization and interior grid nudging. J. Appl. Meteor. Climatol., 55, 22632281, https://doi.org/10.1175/JAMC-D-16-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, S., L. J. Mickley, E. M. Leibensperger, D. J. Jacob, D. Rind, and D. G. Streets, 2008: Effects of 2000–2050 global change on ozone air quality in the United States. J. Geophys. Res., 113, D06302, https://doi.org/10.1029/2007JD008917.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, K. Hamilton, and A. Lauer, 2016: Dynamical downscaling of the climate for the Hawaiian Islands. Part I: Present day. J. Climate, 29, 30273048, https://doi.org/10.1175/JCLI-D-15-0432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Zhao, S. Chen, J. Guo, and E. Wang, 2015: Prediction of maize yield response to climate change with climate and crop model uncertainties. J. Appl. Meteor. Climatol., 54, 785794, https://doi.org/10.1175/JAMC-D-14-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3043 1779 144
PDF Downloads 1278 245 29